Here we report on detailed three-dimensional maps revealing how brain structure is influenced by individual genetic differences. A genetic continuum was detected in which brain structure was increasingly similar in subjects with increasing genetic affinity. Genetic factors significantly influenced cortical structure in Broca's and Wernicke's language areas, as well as frontal brain regions (r2(MZ) > 0.8, p < 0.05). Preliminary correlations were performed suggesting that frontal gray matter differences may be linked to Spearman's g, which measures successful test performance across multiple cognitive domains (p < 0.05). These genetic brain maps reveal how genes determine individual differences, and may shed light on the heritability of cognitive and linguistic skills, as well as genetic liability for diseases that affect the human cortex.
Previous event-related potential (ERP) studies have suggested a possible participation of the visual cortex of the blind in auditory processing. In the present study, somatosensory and auditory ERPs of blind and sighted subjects were recorded when subjects were instructed to attend to stimuli of one modality and to ignore those of the other. Both modalities were stimulated with frequent ("standard") and infrequent ("deviant") stimuli, which differed from one another in their spatial locus of origin. In the sighted, deviant stimuli of the attended modality elicited N2 type of deflections (auditory N2b and somatosensory N250) over the lateral scalp areas. In contrast, in the blind, these ERP components were centroposteriorly distributed, suggesting an involvement of posterior brain areas in auditory and somatosensory stimulus discrimination. In addition, the mismatch negativity, elicited by deviant auditory stimuli even when the somatosensory stimuli were attended, was larger in the blind than in the sighted. This appears to indicate enhanced automatic processing of auditory stimulus changes in the blind. Thus, the present data suggest several compensatory changes in both auditory and somatosensory modalities after the onset of early visual deprivation.
Some of the inconsistencies in previous studies of WMHIs are due to differences in visual rating scales. Our findings may warrant international debate regarding harmonization of WMHI ratings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.