In this work, we report on the improvement of microarray sensitivity provided by a crystalline silicon substrate coated with thermal silicon oxide functionalized by a polymeric coating. The improvement is intended for experimental procedures and instrumentations typically involved in microarray technology, such as fluorescence labeling and a confocal laser scanning apparatus. The optimized layer of thermally grown silicon oxide (SiO(2)) of a highly reproducible thickness, low roughness, and fluorescence background provides fluorescence intensification due to the constructive interference between the incident and reflected waves of the fluorescence radiation. The oxide surface is coated by a copolymer of N,N-dimethylacrylamide, N-acryloyloxysuccinimide, and 3-(trimethoxysilyl)propyl methacrylate, copoly(DMA-NAS-MAPS), which forms, by a simple and robust procedure, a functional nanometric film. The polymeric coating with a thickness that does not appreciably alter the optical properties of the silicon oxide confers to the slides optimal binding specificity leading to a high signal-to-noise ratio. The present work aims to demonstrate the great potential that exists by combining an optimized reflective substrate with a high performance surface chemistry. Moreover, the techniques chosen for both the substrate and surface chemistry are simple, inexpensive, and amenable to mass production. The present application highlights their potential use for diagnostic applications of real clinical relevance. The coated silicon slides, tested in protein and peptide microarrays for detection of specific antibodies, lead to a 5-10-fold enhancement of the fluorescence signals in comparison to glass slides.
The self-assembling of the amyloid β (Aβ) peptide into neurotoxic aggregates is considered a central event in the pathogenesis of Alzheimer's disease (AD). Based on the "amyloid hypothesis", many efforts have been devoted to designing molecules able to halt disease progression by inhibiting Aβ self-assembly. Here, we combine biophysical (ThT assays, TEM and AFM imaging), biochemical (WB and ESI-MS), and computational (all-atom molecular dynamics) techniques to investigate the capacity of four optically pure components of the natural product silymarin (silybin A, silybin B, 2,3-dehydrosilybin A, 2,3-dehydrosilybin B) to inhibit Aβ aggregation. Despite TEM analysis demonstrated that all the four investigated flavonoids prevent the formation of mature fibrils, ThT assays, WB and AFM investigations showed that only silybin B was able to halt the growth of small-sized protofibrils thus promoting the formation of large, amorphous aggregates. Molecular dynamics (MD) simulations indicated that silybin B interacts mainly with the C-terminal hydrophobic segment MVGGVV of Aβ40. Consequently to silybin B binding, the peptide conformation remains predominantly unstructured along all the simulations. By contrast, silybin A interacts preferentially with the segments LVFF and NKGAII of Aβ40 which shows a high tendency to form bend, turn, and β-sheet conformation in and around these two domains. Both 2,3-dehydrosilybin enantiomers bind preferentially the segment LVFF but lead to the formation of different small-sized, ThT-positive Aβ aggregates. Finally, in vivo studies in a transgenic Caenorhabditis elegans strain expressing human Aβ indicated that silybin B is the most effective of the four compounds in counteracting Aβ proteotoxicity. This study underscores the pivotal role of stereochemistry in determining the neuroprotective potential of silybins and points to silybin B as a promising lead compound for further development in anti-AD therapeutics.
An experimental study of the Si 2p XPS spectrum at different take-off angles of atomically flat, hydrogenterminated 1 × 1 Si(100) is reported. The observed spectrum can be described accurately by considering three additional contributions to the spectrum of elemental silicon. Each contribution is attributed to a chemical state of silicon on the basis of its chemical shift with respect to elemental silicon and the depth of the region where it was originated.
Here we show the fabrication of the Luminometric Sub-nanoliter Droplet-to-droplet Array (LUMDA chip) by inkjet printing. The chip is easy to be implemented and allows for a multiplexed multi-step biochemical assay in sub-nanoliter liquid spots. This concept is here applied to the integral membrane enzyme CYP3A4, i.e. the most relevant enzymatic target for phase I drug metabolism, and to some structurally-related inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.