Identifying asthma triggers forms the basis of environmental secondary prevention. These triggers may be allergenic or nonallergenic. Allergenic triggers include indoor allergens, such as house dust mites (HDMs), molds, pets, cockroaches, and rodents, and outdoor allergens, such as pollens and molds. Clinical observations provide support for the role of HDM exposure as a trigger, although avoidance studies provide conflicting results. Molds and their metabolic products are now considered to be triggers of asthma attacks. Pets, dogs, and especially cats can undoubtedly trigger asthmatic symptoms in sensitized subjects. Avoidance is difficult and rarely adhered to by families. Cockroach allergens contribute to asthma morbidity, and avoidance strategies can lead to clinical benefit. Mouse allergens are mostly found in inner-city dwellings, but their implication in asthma morbidity is debated. In the outdoors, pollens can induce seasonal asthma in sensitized individuals. Avoidance relies on preventing pollens from getting into the house and on minimizing seasonal outdoor exposure. Outdoor molds may lead to severe asthma exacerbations. Nonallergenic triggers include viral infections, active and passive smoking, meteorological changes, occupational exposures, and other triggers that are less commonly involved. Viral infection is the main asthma trigger in children. Active smoking is associated with higher asthma morbidity, and smoking cessation interventions should be personalized. Passive smoking is also a risk factor for asthma exacerbation. The implementation of public smoking bans has led to a reduction in the hospitalization of asthmatic children. Air pollution levels have been linked with asthmatic symptoms, a decrease in lung function, and increased emergency room visits and hospitalizations. Since avoidance is not easy to achieve, clean air policies remain the most effective strategy. Indoor air is also affected by air pollutants, such as cigarette smoke and volatile organic compounds generated by building and cleaning materials. Occupational exposures include work-exacerbated asthma and work-related asthma.
BackgroundAllergic bronchopulmonary aspergillosis (ABPA) is an underestimated allergic disease due to Aspergillus fumigatus (AF). The main diagnostic criteria for ABPA rely on the evaluation of immunoglobulin (Ig) E and IgG responses to AF extracts, although these cannot discriminate AF-sensitization from ABPA.ObjectivesTo evaluate the performance of cellular functional assays with extract and molecular AF allergens in ABPA.MethodsA prospective cohort of 67 patients (6 ABPA) was investigated with basophil activation test (BAT) with AF extract. Twelve patients were further investigated for BAT responses to molecular AF components: Asp f 1, Asp f 2, Asp f 3, Asp f 4, and Asp f 6.ResultsBAT with AF extract with an optimized cutoff displayed 100% sensitivity and 77.6% specificity for ABPA diagnosis. Among patients with positive BAT to AF, BAT with Asp f 4 was significantly higher in ABPA patients at 10 ng/mL (mean basophil stimulation index 10.56 in ABPA vs. 1.24 in non-ABPA patients, p = 0.0002).ConclusionBAT with AF is a promising diagnostic biomarker in the context of suspected ABPA, which can be further improved with AF molecular allergens, especially Asp f 4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.