Abstract. Nitrous Acid (HONO) plays an important role in tropospheric chemistry as a precursor of the hydroxyl radical (OH), the most important oxidizing agent in the atmosphere. Nevertheless, the formation mechanisms of HONO are still not completely understood. Recent field observations found unexpectedly high daytime HONO concentrations in both urban and rural areas, which point to unrecognized, most likely photolytically enhanced HONO sources. Several gas-phase, aerosol, and ground surface chemistry mechanisms have been proposed to explain elevated daytime HONO, but atmospheric evidence to favor one over the others is still weak. New information on whether HONO formation occurs in the gas-phase, on aerosol, or at the ground may be derived from observations of the vertical distribution of HONO and its precursor nitrogen dioxide, NO 2 , as well as from its dependence on solar irradiance or actinic flux.Here we present field observations of HONO, NO 2 and other trace gases in three altitude intervals (30-70 m, 70-130 m and 130-300 m) using UCLA's long path DOAS instrument, as well as in situ measurements of OH, NO, photolysis frequencies and solar irradiance, made in Houston, TX, during the Study of Houston Atmospheric Radical Precursor (SHARP) experiment from 20 April to 30 May 2009. The observed HONO mixing ratios were often ten times larger than the expected photostationary state with OH and NO. Larger HONO mixing ratios observed near the ground than aloft imply, but do not clearly prove, that the daytime source of HONO was located at or near the ground. Using a pseudo steady-state (PSS) approach, we calculated the missing daytime HONO formation rates, P unknown , on four sunny days. The NO 2 -normalized P unknown , P norm , showed a clear symmetrical diurnal variation with a maximum around noontime, which was well correlated with actinic flux (NO 2 photolysis frequency) and solar irradiance. This behavior, which was found on all clear days in Houston, is a strong indication of a photolytic HONO source.[HONO]/[NO 2 ] ratios also showed a clear diurnal profile, with maxima of 2-3 % around noon. PSS calculations show that this behavior cannot be explained by the proposed gas-phase reaction of photoexcited NO 2 (NO * 2 ) or any other gas-phase or aerosol photolytic process occurring at similar or longer wavelengths than that of HONO photolysis. HONO formation by aerosol nitrate photolysis in the UV also seems to be unlikely. P norm correlated better with solar irradiance (average R 2 = 0.85/0.87 for visible/UV) than with actinic flux (R 2 = 0.76) on the four sunny days, clearly pointing to HONO being formed at the ground rather than on the aerosol or in the gas-phase. In addition, the observed [HONO]/[NO 2 ] diurnal variation can be explained if the formation of HONO depends on solar irradiance, but not if it depends on the actinic flux. The vertical mixing ratio profiles, together with the stronger correlation with solar irradiance, support the idea that photolytically enhanced NO 2 to HONO conversion on the gr...
Photolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first vertically resolved measurements of ClNO(2), together with vertically resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010. Average profiles of ClNO(2) exhibited no significant dependence on height within the boundary layer and residual layer, although individual vertical profiles did show variability. By contrast, nitrous acid was strongly enhanced near the ground surface with much smaller concentrations aloft. These observations are consistent with a ClNO(2) source from aerosol uptake of N(2)O(5) throughout the boundary layer and a HONO source from dry deposition of NO(2) to the ground surface and subsequent chemical conversion. At ground level, daytime radical formation calculated from nighttime-accumulated HONO and ClNO(2) was approximately equal. Incorporating the different vertical distributions by integrating through the boundary and residual layers demonstrated that nighttime-accumulated ClNO(2) produced nine times as many radicals as nighttime-accumulated HONO. A comprehensive radical budget at ground level demonstrated that nighttime radical reservoirs accounted for 8% of total radicals formed and that they were the dominant radical source between sunrise and 09:00 Pacific daylight time (PDT). These data show that vertical gradients of radical precursors should be taken into account in radical budgets, particularly with respect to HONO.
Abstract. Attributing observed CO2 variations to human or natural cause is critical to deducing and tracking emissions from observations. We have used in situ CO2, CO, and planetary boundary layer height (PBLH) measurements recorded during the CalNex-LA (CARB et al., 2008) ground campaign of 15 May–15 June 2010, in Pasadena, CA, to deduce the diurnally varying anthropogenic component of observed CO2 in the megacity of Los Angeles (LA). This affordable and simple technique, validated by carbon isotope observations and WRF-STILT (Weather Research and Forecasting model – Stochastic Time-Inverted Lagrangian Transport model) predictions, is shown to robustly attribute observed CO2 variation to anthropogenic or biogenic origin over the entire diurnal cycle. During CalNex-LA, local fossil fuel combustion contributed up to ~50% of the observed CO2 enhancement overnight, and ~100% of the enhancement near midday. This suggests that sufficiently accurate total column CO2 observations recorded near midday, such as those from the GOSAT or OCO-2 satellites, can potentially be used to track anthropogenic emissions from the LA megacity.
Abstract. The California Research at the Nexus of Air Quality and Climate Change (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES) field campaigns during May and June 2010 provided a data set appropriate for studying the structure of the atmospheric boundary layer (BL). The NASA Langley Research Center (LaRC) airborne high spectral resolution lidar (HSRL) was deployed to California onboard the NASA LaRC B-200 aircraft to aid in characterizing aerosol properties during these two field campaigns. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 31 flights, many in coordination with other research aircraft and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as the depth and variability of the daytime mixed layer (ML) height. The paper describes the modified Haar wavelet covariance transform method used to derive the ML heights from HSRL backscatter profiles. HSRL ML heights are validated using ML heights derived from two radiosonde profile sites during CARES. Comparisons between ML heights from HSRL and a Vaisala ceilometer operated during CalNex were used to evaluate the representativeness of a fixed measurement over a larger region. In the Los Angeles basin, comparisons of ML heights derived from HSRL measurements and ML heights derived from the ceilometer result in a very good agreement (mean bias difference of 10 m and correlation coefficient of 0.89) up to 30 km away from the ceilometer site, but are essentially uncorrelated for larger distances, indicating that the spatial variability of the ML height is significant over these distances and not necessarily well captured by limited ground stations. The HSRL ML heights are also used to evaluate the performance in simulating the temporal and spatial variability of ML heights from the Weather Research and Forecasting Chemistry (WRF-Chem) community model. When compared to aerosol ML heights from HSRL, thermodynamic ML heights from WRF-Chem were underpredicted in the CalNex and CARES regions, shown by a bias difference value of −157 m and −29 m, respectively. Better agreement over the Central Valley than in mountainous regions suggests that some variability in the ML height is not well captured at the 4 km grid resolution of the model. A small but significant number of cases have poor agreement when WRF-Chem consistently overestimates the ML height in the late afternoon. Additional comparisons with WRFChem aerosol mixed layer heights show no significant improvement over thermodynamic ML heights, confirming that any differences between measurement and model are not due to the methodology of ML height determination.
Boundary layer height is estimated during a 21-month period in Houston, Texas, using continuous ceilometer observations and the minimum-gradient method. A comparison with over 60 radiosondes indicates overall agreement between ceilometer-and radiosonde-estimated PBL and residual layer heights. Additionally, the ceilometer-estimated PBL heights agree well with 31 vertical profiles of ozone. Difficulty detecting the PBL height occurs immediately following a frontal system with precipitation, during periods with high wind speeds, and in the early evening when convection is weakening, a new stable surface layer is forming, and the lofted aerosols detected by the lidar do not represent the PBL. Long-term diurnal observations of the PBL height indicate nocturnal PBL heights range from approximately 100 to 300 m throughout the year, while the convective PBL displays more seasonal and daily variability typically ranging from 1100 m in the winter to 2000 m in the summer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.