[1] An extensive set of volatile organic compounds (VOCs) and particulate organic matter (POM) was measured in polluted air during the New England Air Quality Study in 2002. Using VOC ratios, the photochemical age of the sampled air masses was estimated. This approach was validated (1) by comparing the observed rates at which VOCs were removed from the atmosphere with the rates expected from OH oxidation, (2) by comparing the VOC emission ratios inferred from the data with the average composition of urban air, and (3) by the ability to describe the increase of an alkyl nitrate with time in terms of the chemical kinetics. A large part of the variability observed for oxygenated VOCs (OVOCs) and POM could be explained by a description that includes the removal of the primary anthropogenic emissions, the formation and removal of secondary anthropogenic species, and a biogenic contribution parameterized by the emissions of isoprene. The OVOC sources determined from the data are compared with the available literature, and a satisfactory agreement is obtained. The observed sub-mm POM was highly correlated with secondary anthropogenic gas-phase species, strongly suggesting that the POM was from secondary anthropogenic sources. The results are used to describe the speciation and total mass of gas-and particle-phase organic carbon as a function of the photochemical age of an urban air mass. Shortly after emission the organic carbon mass is dominated by primary VOCs, while after two days the dominant contribution is from OVOCs and sub-mm POM. The total measured organic carbon mass decreased by about 40% over the course of two days. The increase in sub-mm POM could not be explained by the removal of aromatic precursors alone, suggesting that other species must have contributed and/or that the mechanism for POM formation is more efficient than previously assumed.Citation: de Gouw, J. A., et al. (2005), Budget of organic carbon in a polluted atmosphere: Results from the New England Air
A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)-including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products-now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.
Abstract. Volatile and intermediate-volatility non-methane organic gases (NMOGs) released from biomass burning were measured during laboratory-simulated wildfires by protontransfer-reaction time-of-flight mass spectrometry (PTRToF). We identified NMOG contributors to more than 150 PTR ion masses using gas chromatography (GC) preseparation with electron ionization, H 3 O + chemical ionization, and NO + chemical ionization, an extensive literature review, and time series correlation, providing higher certainty for ion identifications than has been previously available. Our interpretation of the PTR-ToF mass spectrum accounts for nearly 90 % of NMOG mass detected by PTR-ToF across all fuel types. The relative contributions of different NMOGs to individual exact ion masses are mostly similar across many fires and fuel types. The PTR-ToF measurements are compared to corresponding measurements from open-path Fourier transform infrared spectroscopy (OP-FTIR), broadband cavity-enhanced spectroscopy (ACES), and iodide ion chemical ionization mass spectrometry (I − CIMS) where possible. The majority of comparisons have slopes near 1 and values of the linear correlation coefficient, R 2 , of > 0.8, including compounds that are not frequently reported by PTR-MS such as ammonia, hydrogen cyanide (HCN), nitrous acid (HONO), and propene. The exceptions include methylglyoxal and compounds that are known to be difficult to measure with one or more of the deployed instruments. The fireintegrated emission ratios to CO and emission factors of NMOGs from 18 fuel types are provided. Finally, we provide an overview of the chemical characteristics of detected species. Non-aromatic oxygenated compounds are the most abundant. Furans and aromatics, while less abundant, comprise a large portion of the OH reactivity. The OH reactivity, its major contributors, and the volatility distribution of emissions can change considerably over the course of a fire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.