Retention time of food in the digestive tract is a major aspect describing the digestive physiology of herbivores. Differences in feed retention times have been described for different ruminant feeding types. In this study, a dominantly grazing desert ruminant, the addax (Addax nasomaculatus), was investigated in this respect. Eight animals with a body weight (BW) of 87+/-5.3 kg on an ad libitum grass hay (Chloris gayana) diet were available. Co-EDTA and Cr-mordanted fibers (<2 mm) were used as pulse-dose markers. Mean retention time (MRT) in the digestive tract was calculated from faecal marker excretion. Average daily intake of the addax was found to be 1.7 kg dry matter (DM) or 60+/-8.3 g DM/kg BW(0.75). The MRT of fluid and particles in the reticulo-rumen (MRT(fluid)RR and MRT(particle)RR) were quantified to be 20+/-5.8 and 42+/-7.0 h respectively. When compared to literature data, MRT(fluid)RR was significantly longer than in cattle species, and MRT(particle)RR was significantly longer than in 11 taxa of all feeding types. The ratio of MRT(particle)RR/MRT(fluid)RR (2.3+/-0.5) was found to be within the range described for grazing ruminants. The long retention times found in the addax can be interpreted as an adaptation to a diet including a high proportion of slow fermenting grasses, while the long retention time of the fluid phase can be interpreted as a consequence of water saving mechanisms of the desert-adapted addax with a potentially low water turnover and capacious water storing rumen.
The growth and weight development of Leopard tortoise hatchings (Geochelone pardalis) kept at the Al Wabra Wildlife Preservation (AWWP), Qatar, was observed for more than four years, and compared to data in literature for free-ranging animals on body weight or carapace measurements. The results document a distinctively faster growth in the captive animals. Indications for the same phenomenon in other tortoise species (Galapagos giant tortoises, G. nigra; Spur-thighed tortoises, Testudo graeca; Desert tortoises, Gopherus agassizi) were found in the literature. The cause of the high growth rate most likely is the constant provision with highly digestible food of low fiber content. Increased growth rates are suspected to have negative consequences such as obesity, high mortality, gastrointestinal illnesses, renal diseases, "pyramiding," fibrous osteodystrophy or metabolic bone disease. The apparently widespread occurrence of high growth rates in intensively managed tortoises underlines how easily ectothermic animals can be oversupplemented with nutrients.
Clauss, M (2011). Solute and particle retention in the digestive tract of the Phillip's dikdik (Madoqua saltiana phillipsi), a very small browsing ruminant: Biological and methodological implications. Comparative Biochemistry and Physiology -Part A: Molecular and Integrative Physiology, 159(3):284-290.Solute and particle retention in the digestive tract of the Phillip's dikdik (Madoqua saltiana phillipsi), a very small browsing ruminant: Biological and methodological implications Abstract Morphological characteristics of the forestomach, as well as reports of a natural diet that mostly excludes monocots, suggest that dikdiks (Madoqua spp.), among smallest extant ruminants, should have a 'moosetype' forestomach physiology characterised by a low degree of selective particle retention. We tested this assumption in a series of feeding experiments with 12 adult Phillip's dikdiks (Madoqua saltiana phillipsi) on three different intake levels per animal, using cobalt-EDTA as a solute marker and a 'conventional' chromiummordanted fibre (b2 mm; mean particle size 0.63 mm) marker for the particle phase. Body mass had no influence on retention measurements, whereas food intake level clearly had. Drinking water intake was not related to the retention of the solute marker. In contrast to our expectations, the particle marker was retained distinctively longer than the solute marker. Comparisons with results in larger ruminants and with faecal particle sizes measured in dikdiks suggested that in these small animals, the chosen particle marker was above the critical size threshold, above which particle delay in the forestomach is not only due to selective particle retention (as compared to fluids), but additionally due to the ruminal particle sorting mechanism that retains particles above this threshold longer than particles below this threshold. A second study with a similar marker of a lower mean particle size (0.17 mm, which is below the faecal particle size reported for dikdiks) resulted in particle and fluid retention patterns similar to those documented in other 'moose-type' ruminants. Nevertheless, even this smaller particle marker yielded retention times that were longer than those predicted by allometric equations based on quarter-power scaling, providing further support for observations that small ruminants generally achieve longer retention times and higher digestive efficiencies than expected based on their body size. Morphological characteristics of the forestomach, as well as reports of a natural diet that 23 mostly excludes monocots, suggest that dikdiks (Madoqua spp.), among smallest extant 24 ruminants, should have a 'moose-type' forestomach physiology characterized by a low degree 25 of selective particle retention. We tested this assumption in a series of feeding experiments 26with 12 adult Phillip's dikdiks (Madoqua saltiana phillipsi) on three different intake levels 27 per animal, using cobalt-EDTA as a solute marker and a 'conventional' chromium-mordanted 28 fibre (< 2mm; mean particle size 0.63 mm) marke...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.