A facile and versatile modification strategy: A chemically activated method of covalently derivatising carbon powder, via the chemical reduction of aryl diazonium salts with hypophosphorous acid, to include the covalent derivatisation of multiwalled carbon nanotubes (MWCNTs) is demonstrated. The specific molecular environments of 1‐anthraquinonyl moieties attached to MWCNTs (see picture) produce interesting effects.
The influence of lithium ion pairing on the voltammetric reduction of anthraquinone in acetonitrile is reported. On gold electrodes, the single electron reduction generates a radical anion which forms a complex with lithium cations from the electrolyte. In situ ESR studies support this finding, and signal intensity measurements are used to estimate a value for the complexation equilibrium constant. Values calculated were of the of the order of 6000 mol(-1) dm3. Potential shift measurements and Digisim modeling are shown to be in support of a complexation mechanism in which a little of the complex precipitates on the electrode surface. The effect of lithium ion pairing is also demonstrated for the case in which 1-anthraquinonyl groups are covalently attached to multiwalled carbon nanotubes abrasively immobilized on a basal plane pyrolytic graphite electrode.
The voltammetric response of nitrogen dioxide in aqueous sulfuric acid using an edge plane pyrolytic graphite electrode has been explored and contrasted with that from basal plane pyrolytic graphite, glassy carbon or boron-doped diamond electrodes. Edge plane graphite electrode is found to produce an excellent voltammetric signal in comparison with other carbon-based electrodes exhibiting a well-defined analytically useful voltammetric redox couple in 2.5 M sulfuric acid which is absent on the alternative electrodes.
Multi-walled carbon nanotubes (MWCNTs) have been chemically derivatised via the reduction of anthraquinone-1-diazonium chloride with hypophosphorous acid to attach 1-anthraquinonyl groups to the MWCNTs, most likely at edge plane like defects. The covalently attached quinone moiety attached to the nanotubes ('molecular wire') acts as an effective mediator for the electrocatalytic reduction of oxygen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.