Summary
The theory of thermoregulation has developed slowly, hampering efforts to predict how individuals can buffer climate change through behaviour. Mixed results of field and laboratory experiments underscore the need to test hypotheses about thermoregulation explicitly, while measuring costs and benefits in different thermal landscapes.
We simulated body temperature and energy expenditure of a virtual lizard that either thermoregulates optimally or thermoconforms in a landscape of either low or high quality (one or four basking sites, respectively). We then compare the predicted values in each landscape with the observed values for real lizards in experimental arenas.
Lizards thermoregulated more accurately in the high‐quality landscape than they did on the low‐quality landscape, albeit only slightly so, but spent similar amounts of energy in these landscapes. Basking, rather than shuttling between heat sources, accounted for the majority of the energy consumed in both landscapes.
These results did not support the predictions of our model. In the low‐quality landscape, real lizards thermoregulated intensely despite the potential to save energy by thermoconforming. In the high‐quality landscape, lizards moved more than expected, suggesting that lizards explored their surroundings despite being able to thermoregulate without doing so.
Our results suggest that non‐energetic benefits drive thermoregulatory behaviour in costly environments, despite the missed opportunities arising from thermoregulation. We propose that energetic costs associated with thermoregulatory movement will become substantial in homogeneous environments such as flat plains and dense forests. The theory of thermoregulation should incorporate these aspects if biologists wish to predict responses of ectotherms to changing climates and habitats.
A http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.12795/suppinfo is available for this article.
Rapid cold-hardening (RCH) is a unique form of phenotypic plasticity which confers survival advantages at low temperature. The fitness costs of RCH are generally poorly elucidated and are important to understanding the evolution of plastic physiology. This study examined whether RCH responses, induced by ecologically relevant diel temperature fluctuations, carry metabolic, survival, or fecundity costs. We predicted that potential costs in RCH would be manifested as differences in metabolic rate, fecundity, or survival in flies which have hardened versus those which have not, or flies that have experienced more RCH events would show greater costs than those which have experienced fewer events. One group of flies cooled to 10 • C for 2 h for 11 consecutive days experienced daily RCH (Hardened), whereas the other group exposed to 15 • C for the same 2-h period each day formed a Control group. Hardened flies had higher survival at -5 • C for 2 h than control flies (69 ± 9% vs. 44 ± 19%, P = 0.04). Hardened flies showed no metabolic or fecundity costs, but had reduced average survival (P = 0.0403). Thus, a major cost to repeated low temperature exposures in Ceratitis capitata is through direct mortality caused by chilling injury, although this appears not to be a direct cost of RCH.
K E Y W O R D S :Drosophila, fecundity, metabolic rate, rapid cold-hardening, survival.
Environmental variability occurring at different timescales can significantly reduce performance, resulting in evolutionary fitness costs. Shifts in thermoregulatory behavior, metabolism, and water loss via phenotypic plasticity can compensate for thermal variation, but the relative contribution of each mechanism and how they may influence each other are largely unknown. Here, we take an ecologically relevant experimental approach to dissect these potential responses at two temporal scales: weather transients and seasons. Using acclimation to cold, average, or warm conditions in summer and winter, we measure the direction and magnitude of plasticity of resting metabolic rate (RMR), water loss rate (WLR), and preferred body temperature (T pref ) in the lizard Cordylus oelofseni within and between seasons. In summer, lizards selected lower T pref when acclimated to warm versus cold but had no plasticity of either RMR or WLR. By contrast, winter lizards showed partial compensation of RMR but no behavioral compensation. Between seasons, both behavioral and physiological shifts took place. By integrating ecological reality into laboratory assays, we demonstrate that behavioral and physiological responses of C. oelofseni can be contrasting, depending on the timescale investigated. Incorporating ecologically relevant scenarios and the plasticity of multiple traits is thus essential when attempting to forecast extinction risk to climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.