The location and nature of the HIV-1 packaging signal are largely unknown, despite several genetic and biochemical mutational analyses. In this report we present our attempts to define a minimal HIV-1 packaging signal through the generation of test RNAs containing small blocks of HIV-1 sequences. We constructed RNAs differing in the position and identity of the HIV-1 sequence and the segments of heterologous sequences. However, none of the vectors were efficiently, encapsidated by wild-type HIV-1 virions. These results contrast those of Moloney murine leukemia virus and Rous sarcoma virus, where small viral segments mediate the efficient encapsidation of heterologous RNAs. The results suggest that the HIV-1 packaging signal may be extremely dispersed or heavily context-dependent.
We describe the generation of stable human immunodeficiency virus type 1 (HIV-1)-packaging lines that constitutively express high levels of HIV-1 structural proteins in either a Rev-dependent or a Rev-independent fashion. These cell lines were used to assess gene transfer by using an HIV-1 vector expressing the hygromycin B resistance gene and to study the effects of Rev, Tat, and Nef on the vector titer. The Rev-independent cell lines were created by using gag-pol and env expression vectors that contain the Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE). Vector titers approaching 10 4 CFU/ml were routinely obtained with these cell lines, as well as with the Rev-dependent cell lines, with HeLa-CD4 cells as targets. The presence of Nef and Tat in the producer cell each increased the vector titer 5-to 10-fold. Rev, on the other hand, was absolutely essential for gene transfer, unless the MPMV CTE was present in the vector. In that case, by using the Rev-independent cell lines for packaging, Rev could be completely eliminated from the system without a reduction in vector titer.
Although most reports defining the human immunodeficiency virus type 1 (HIV-1) genomic RNA packaging signal have focused on the region downstream of the major 5′ splice site, others have suggested that sequences upstream of the splice site may also play an important role. In this study we have directly examined the role played by the HIV-1 TAR region in RNA packaging. For these experiments we used a proviral expression system that is largely independent of Tat for transcriptional activation. This allowed us to create constructs that efficiently expressed RNAs carrying mutations in TAR and to determine the ability of these RNAs to be packaged. Our results indicate that loss of sequences in TAR significantly reduce the ability of a viral RNA to be packaged. The requirement for TAR sequences in RNA packaging was further examined by using a series of missense mutations positioned throughout the entire TAR structure. TAR mutations previously shown to influence Tat transactivation, such as G31U in the upper loop region or UCU to AAG in the bulge (nucleotides [nt] 22 to 24), failed to have any effect on RNA packaging. Mutations which disrupted the portion of the TAR stem immediately below the bulge also had little effect. In contrast, dramatic effects on RNA packaging were observed with constructs containing mutations in the lower portion of the TAR stem. Point mutations which altered nt 5 to 9, 10 to 15, 44 to 49, or 50 to 54 all reduced RNA packaging 11- to 25-fold. However, compensatory double mutations which restored the stem structure were able to restore packaging. These results indicate that an intact lower stem structure, rather than a specific sequence, is required for RNA packaging. Our results also showed that RNA molecules retained within the nucleus cannot be packaged, unless they are transported to the cytoplasm by either Rev/Rev response element or the Mason-Pfizer monkey virus constitutive transport element.
The human immunodeficiency virus 1 (HIV-1) Rev transactivator protein plays a critical role in the regulation of expression of structural proteins by controlling the pathway of mRNA transport. The Rev protein is located predominantly in the nucleoli of HIV-1 infected or Rev-expressing cells. Previous studies demonstrated that the Rev protein forms a specific complex in vitro with protein B23 which is suggested to be a nucleolar receptor and/or carrier for the Rev protein. To study the role of the nucleolus and nucleolar proteins in Rev function, transfected COS-7 or transformed CMT3 cells expressing the Rev protein were examined for subcellular locations of Rev and other proteins using indirect immunofluorescence and immunoelectron microscopy. One day after transfection the Rev protein was found in most cells only in the nucleolar dense fibrillar and granular components where it colocalized with protein B23. These were designated class 1 cells. In a second class of cells Rev and B23 accumulated in the nucleoplasm as well as in nucleoli. Treatment of class 1 cells with actinomycin D (AMD) under conditions that blocked only RNA polymerase I transcription caused Rev to completely redistribute from nucleoli to the cytoplasm. Simultaneously, protein B23 was partially released from nucleoli, mostly into the nucleoplasm, with detectable amounts in the cytoplasm. In cells recovering from AMD treatment in the presence of cycloheximide Rev and B23 showed coincident relocation to nucleoli. Class 2 cells were resistant to AMD-induced Rev redistribution. Selective inhibition of RNA polymerase II transcription by alpha-amanitin or by DRB did not cause Rev to be released into the cytoplasm suggesting that active preribosomal RNA transcription is required for the nucleolar location of Rev. However, treatment with either of the latter two drugs at higher doses and for longer times caused partial disruption of nucleoli accompanied by translocation of the Rev protein to the cytoplasm. These results suggest that the nucleolar location of Rev depends on continuous preribosomal RNA transcription and a substantially intact nucleolar structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.