The constitutive transport elements (CTEs) of type D retroviruses are cis-acting elements that promote nuclear export of incompletely spliced mRNAs. Unlike the Rev response element (RRE) of human immunodeficiency virus type 1 (HIV-1), CTEs depend entirely on factors encoded by the host cell genome. We show that an RNA comprised almost entirely of the CTE of Mason-Pfizer monkey virus (CTE RNA) is exported efficiently from Xenopus oocyte nuclei. The CTE RNA and an RNA containing the RRE of HIV-1 (plus Rev) have little effect on export of one another, demonstrating differences in host cell requirements of these two viral mRNA export pathways. Surprisingly, even very low amounts of CTE RNA block export of normal mRNAs, apparently through the sequestration of cellular mRNA export factors. Export of a CTE-containing lariat occurs when wild-type CTE, but not a mutant form, is inserted into the pre-mRNA. The CTE has two symmetric structures, either of which supports export and the titration of mRNA export factors, but both of which are required for maximal inhibition of mRNA export. Two host proteins bind specifically to the CTE but not to non-functional variants, making these proteins candidates for the sequestered mRNA export factors.
A single simian virus 40 late replacement vector which expresses both the rev and envelope (env) genes of human immunodeficiency virus was used to examine the mechanism underlying the dependence of env gene expression on the rev protein. When rev was deleted from the vector, no envelope protein expression could be detected in transfected cells, and the levels of cytoplasmic env mRNA were dramatically reduced. In contrast to this, the levels of env RNA in total cellular RNA preparations were similar with or without rev coexpression, and analysis of nuclear RNA showed that the levels of nuclear env RNA were increased in the absence of rev. These results suggest that rev functions to regulate nuclear export of env mRNA. It was possible to restore env expression from the vector lacking rev by supplying rev in trans, provided that a cis-acting sequence was also present. This sequence was mapped to a 854-base-pair region within the env open reading frame, and it was shown that the sequence could be moved but that it worked only in its original orientation.
Alternative splicing is a key factor contributing to genetic diversity and evolution. Intron retention, one form of alternative splicing, is common in plants but rare in higher eukaryotes, because messenger RNAs with retained introns are subject to cellular restriction at the level of cytoplasmic export and expression. Often, retention of internal introns restricts the export of these mRNAs and makes them the targets for degradation by the cellular nonsense-mediated decay machinery if they contain premature stop codons. In fact, many of the database entries for complementary DNAs with retained introns represent them as artefacts that would not affect the proteome. Retroviruses are important model systems in studies of regulation of RNAs with retained introns, because their genomic and mRNAs contain one or more unspliced introns. For example, Mason-Pfizer monkey virus overcomes cellular restrictions by using a cis-acting RNA element known as the constitutive transport element (CTE). The CTE interacts directly with the Tap protein (also known as nuclear RNA export factor 1, encoded by NXF1), which is thought to be a principal export receptor for cellular mRNA, leading to the hypothesis that cellular mRNAs with retained introns use cellular CTE equivalents to overcome restrictions to their expression. Here we show that the Tap gene contains a functional CTE in its alternatively spliced intron 10. Tap mRNA containing this intron is exported to the cytoplasm and is present in polyribosomes. A small Tap protein is encoded by this mRNA and can be detected in human and monkey cells. Our results indicate that Tap regulates expression of its own intron-containing RNA through a CTE-mediated mechanism. Thus, CTEs are likely to be important elements that facilitate efficient expression of mammalian mRNAs with retained introns.
Tap has been proposed to play a role in general mRNA export and also functions in expression of RNA with retained introns that contain the MPMV CTE (constitutive transport element). Tap forms a functional heterodimer with NXT/p15. We have previously demonstrated that unspliced intron-containing CTE RNA is efficiently exported to the cytoplasm in mammalian cells. Here we show that Tap and NXT proteins function together to enhance translation of proteins from the exported CTE RNA. Pulse chase experiments show that Tap/NXT significantly increases the rate of protein synthesis. Sucrose gradient analysis demonstrates that Tap and NXT efficiently shift the unspliced RNA into polyribosomal fractions. Furthermore, Tap, but not NXT is detected in polyribosomes. Taken together, our results indicate that Tap and NXT serve a role in translational regulation of RNA after export to the cytoplasm. They further suggest that Tap/NXT may play a role in remodeling of cytoplasmic RNP complexes, providing a link between export pathways and cytoplasmic fate. In higher eukaryotes, the majority of genes produce nascent mRNA transcripts that contain several introns. Export of incompletely spliced RNAs with retained introns from these genes would potentially result in translation of aberrant proteins that could have deleterious effects on the cells. However, cells appear to have developed checkpoints to ensure that only fully spliced mRNAs are exported and expressed (Chang and Sharp 1989;Legrain and Rosbash 1989).Retroviruses use special mechanisms that allow unspliced and incompletely spliced (that is, intron-containing) viral transcripts to exit the nucleus and escape cellular proofreading mechanisms (Hammarskjöld 1997(Hammarskjöld , 2001). Replication of all of these viruses requires the cytoplasmic expression of intron-containing forms of the initial, genome-length viral RNA transcript, because the unspliced RNA serves both as the mRNA for the viral Gag and GagPol proteins and as the RNA that is packaged into viral particles (Berkowitz et al. 1996). In complex retroviruses such as HIV-1, export of unspliced and incompletely spliced RNA relies on the interaction of the viral Rev protein with a structured RNA sequence present in these RNAs, the Rev responsive element (RRE; Hadzopoulou-Cladaras et al. 1989; Hammarskjold et al. 1989;Malim et al. 1989; Pollard and Malim 1998).The resulting mRNP complex is exported by virtue of the nuclear export signal (NES) in Rev that interacts with the cellular export receptor Crm1 (Fornerod et al. 1997;Neville et al. 1997).Simple retroviruses do not encode an Rev-like transacting protein, and export of their unspliced RNA relies on the interaction of cis-acting RNA elements directly with cellular factors. The first element of this kind was identified in the simian type D retrovirus Mason Pfizer Monkey Virus (MPMV) and was given the name CTE (constitutive transport element; Bray et al. 1994; Ernst et al. 1997a,b; Hammarskjold 2001), because its interaction with cellular factors results in constitut...
Cells normally restrict the nuclear export and expression of intron-containing mRNA. In many cell lines, this restriction can be overcome by inclusion of cis-acting elements, such as the Mason-Pfizer monkey virus constitutive transport element (CTE), in the RNA. In contrast, we observed that CTE-mediated expression from human immunodeficiency virus Gag-Pol reporters was very inefficient in 293 and 293T cells. However, addition of Sam68 led to a dramatic increase in the amount of Gag-Pol proteins produced in these cells. Enhancement of CTE function was not seen when a Sam68 point mutant (G178E) that is defective for RNA binding was used. Additionally, the effect of Sam68 was inhibited in a dose-dependent manner by coexpression of an activated form of the nuclear kinase Sik/BRK that hyperphosphorylated Sam68. RNA analysis showed that cytoplasmic Gag-Pol-CTE RNA levels were only slightly enhanced by the addition of Sam68, compared to a 60-to 70-fold increase in the levels of Gag-Pol protein expression. Thus, in this system, Sam68 functioned to enhance the cytoplasmic utilization of RNA containing the CTE. These results suggest that Sam68 may interact with specific RNAs in the nucleus to provide a "mark" that affects their cytoplasmic fate. They also provide further evidence of links between signal transduction and RNA utilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.