Recent collection efforts in the upper Campanian (∼76-73.5 Ma) Fruitland and Kirtland formations of northwestern New Mexico have significantly increased the taxonomic diversity of lizards in this historically poorly understood squamate assemblage. New lizard specimens from the “Hunter Wash Local Fauna” of the upper Fruitland and lower Kirtland formations include: (1) new specimens referable to Chamopsiidae; (2) new material belonging to Scincomorpha, (3) new material belonging to Anguidae; and (4) the first reported predatory lizard (Platynota) material from the Campanian of New Mexico. The increase in lizard diversity in the “Hunter Wash Local Fauna” expands our understanding of Late Cretaceous squamate taxonomy, distribution, and diversity in the Western Interior of North America (Laramidia). Collectively, the described specimens represent family-level diversity similar to that seen in other Campanian foreland basin deposits of the Western Interior, such as the mid-paleolatitude Kaiparowits Formation of southern Utah, the higher paleolatitude Dinosaur Park Formation of southern Alberta, and the lower paleolatitude Aguja Formation of southwestern Texas. The lizards of the “Hunter Wash Local Fauna” represent crucial mid-paleolatitude data from a coastal plain depositional setting in Laramidia—allowing for comparisons to more well-studied assemblages at different latitudes and in different depositional settings.
The fossil record is notoriously imperfect and biased in representation, hindering our ability to place fossil specimens into an evolutionary context. For groups with fossil records mostly consisting of disarticulated parts (e.g., vertebrates, echinoderms, plants), the limited morphological information preserved sparks concerns about whether fossils retain reliable evidence of phylogenetic relationships and lends uncertainty to analyses of diversification, paleobiogeography, and biostratigraphy in Earth's history. To address whether a fragmentary past can be trusted, we need to assess whether incompleteness affects the quality of phylogenetic information contained in fossil data. Herein, we characterize skeletal incompleteness bias in a large dataset (6585 specimens; 14,417 skeletal elements) of fossil squamates (lizards, snakes, amphisbaenians, and mosasaurs). We show that jaws + palatal bones, vertebrae, and ribs appear more frequently in the fossil record than other parts of the skeleton. This incomplete anatomical representation in the fossil record is biased against regions of the skeleton that contain the majority of morphological phylogenetic characters used to assess squamate evolutionary relationships. Despite this bias, parsimony- and model-based comparative analyses indicate that the most frequently occurring parts of the skeleton in the fossil record retain similar levels of phylogenetic signal as parts of the skeleton that are rarer. These results demonstrate that the biased squamate fossil record contains reliable phylogenetic information and support our ability to place incomplete fossils in the tree of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.