Recent advances in angioplasty have involved the application of polymer coatings to stent surfaces for purposes of drug delivery. Given the high levels of deformation developed in the plastic hinge of a stent during deployment, the achievement of an intact bond between the coating and the stent presents a significant mechanical challenge. Problems with coating delamination have been reported in recent experimental studies. In this paper, a cohesive zone model of the stent-coating interface is implemented in order to investigate coating debonding during stent deployment. Simulations reveal that coatings debond from the stent surface in tensile regions of the plastic hinge during deployment. The critical parameters governing the initiation of delamination include the coating thickness and stiffness, the interface strength between the coating and stent surface, and the curvature of the plastic hinge. The coating is also computed to debond from the stent surface in compressive regions of the plastic hinge by a buckling mechanism. Computed patterns of coating delamination correlate very closely with experimental images. This study provides insight into the critical factors governing coating delamination during stent deployment and offers a predictive framework that can be used to improve the design of coated stents.
The advancement of the drug-eluting stent technology raises the significant challenge of safe mechanical design of polymer coated stent systems. Experimental images of stent coatings undergoing significant damage during deployment have been reported; such coating damage and delamination can lead to complications such as restenosis and increased thrombogenicity. In the current study a cohesive zone modeling framework is developed to predict coating delamination and buckling due to hinge deformation during stent deployment. Models are then extended to analyze, for the first time, stent-coating damage due to webbing defects. Webbing defects occur when a bond forms between coating layers on adjacent struts, resulting in extensive delamination of the coating from the strut surfaces. The analyzes presented in this paper uncover the mechanical factors that govern webbing induced coating damage. Finally, an experimental fracture test of a commercially available stent coating material is performed and results demonstrate that the high cohesive strength of the coating material will prevent web fracture, resulting in significant coating delamination during stent deployment.
In this paper computational simulations of stent coating debonding are presented. Finite element methods are implemented to model coating delamination during stent crimping, deployment and recoil. Gold, titanium and polymer coatings of differing thicknesses are explicitly modeled. The interfacial relationship between the stent surface and the coating during crimping and deployment is simulated using a cohesive zone model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.