In every computer graphics system, there is some interaction between a special memory called a frame buffer and a computation engine. It is the architecture between these two that determines how fast, flexible, and expensive the graphics subsystem is. In this paper, we present the testability analysis and chip testing of Enhanced Memory Chip (EMC) using the scan-BIST (built-in self-test) partial scan scenario. EMC is a multimillion transistors graphics computation engine produced by WL/AASE, WPAFB in VHDL formats and is fabricated using 0.5 um CMOS technology. Fundamentally, it is memory that is enhanced with tightly-coupled computational logic on the same chip. The logic is arranged in a single instruction, multiple data architecture that can efficiently perform the linear expression evaluation that is common in the lowest level graphic rasterization. The fault simulation shows that partial scan scenario is feasible for EMC and generates scan-BIST high fault coverage and low overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.