In certain clinical situations, such as photodynamic therapy, light dosimetry should be considered. The propagation of light in tissues is influenced by fundamental or microscopic optical properties, namely absorption mu a and scattering mu s coefficients, refractive index n and anistropy factor g. These optical parameters can be determined experimentally by direct and/or indirect methods when tissue macroscopic properties, such as reflectance, transmittance or collimated transmittance from a tissue slab, are measured. The method described in this work provides graphical, and in simple cases analytical, 'inverse' solutions to determine tissue microscopic properties from measured macroscopic parameters. The graphs necessary for this inversion have been calculated and are provided. The method can be applied in either direct or indirect techniques and it does not depend on limitations introduced by assumptions and approximations when using theoretical models. It can also be applied for any tissue type, detector geometry and experimental apparatus. The accuracy of the method is very good over a wide range, unlimited in practice, of values of optical properties. Finally, the results of this work are in good agreement with theoretical and experimental results of other investigators.
• The radiation dose imparted during fluoroscopically guided interventional procedures can be high • Understanding of reference levels might help optimise interventional cardiological procedures • Optimisation by changing the systems' settings seems feasible in some cases • Procedure complexity and the patient's clinical problem should be taken into account.
The total system error (TSE) of a CyberKnife system was measured using two phantom-based methods and one patient-based method. The standard radiochromic film (RCF) end-to-end (E2E) test using an anthropomorphic head and neck phantom and isocentric treatment delivery was used with the 6Dskull, Fiducial and Xsight spine (XST) tracking methods. More than 200 RCF-based E2E results covering the period from installation in 2006 until 2017 were analyzed with respect to tracking method, system hardware and software versions, secondary collimation system, and years since installation. An independent polymer gel E2E method was also applied, involving a 3D printed head phantom and multiple spherical target volumes widely distributed within the brain. Finally, the TSE was assessed by comparing the delineated target in the planning computed tomography images of a patient treated for a thalamic functional target with the radiation-induced lesion defined on the six-month follow-up magnetic resonance (MR) images. Statistical analysis of the RCF-based TSE results showed mean ± standard deviation values of 0.40 ± 0.18 mm, 0.40 ± 0.19 mm, and 0.55 ± 0.20 mm for the 6Dskull, Fiducial, and XST tracking methods, respectively. Polymer gel TSE values smaller than 0.66 mm were found for seven targets distributed within the brain, showing that the targeting accuracy of the system is sustained even for targets situated up to 80 mm away from the center of the skull. An average clinical TSE value of 0.87 ± 0.25 mm was also measured using the FSE T2 and FLAIR post-treatment MR image data. Analysis of the long-term RCF-based E2E tests showed no changes of TSE over time. This study is the first to report long-term (>10 years) analysis of TSE, TSE measurement for targets positioned at large distances from the virtual machine isocenter, or a clinical assessment of TSE for the CyberKnife system. All of these measurements demonstrate TSE consistently < 1 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.