bIt was previously demonstrated that there are no indigenous strains of Bradyrhizobium japonicum forming nitrogen-fixing root nodule symbioses with soybean plants in arable field soils in Poland. However, bacteria currently classified within this species are present (together with Bradyrhizobium canariense) as indigenous populations of strains specific for nodulation of legumes in the Genisteae tribe. These rhizobia, infecting legumes such as lupins, are well established in Polish soils. The studies described here were based on soybean nodulation field experiments, established at the Poznań University of Life Sciences Experiment Station in Gorzyń , Poland, and initiated in the spring of 1994. Long-term research was then conducted in order to study the relation between B. japonicum USDA 110 and USDA 123, introduced together into the same location, where no soybean rhizobia were earlier detected, and nodulation and competitive success were followed over time. Here we report the extra-long-term saprophytic survival of B. japonicum strains nodulating soybeans that were introduced as inoculants 20 years earlier and where soybeans were not grown for the next 17 years. The strains remained viable and symbiotically competent, and molecular and immunochemical methods showed that the strains were undistinguishable from the original inoculum strains USDA 110 and USDA 123. We also show that the strains had balanced numbers and their mobility in soil was low. To our knowledge, this is the first report showing the extra-long-term persistence of soybean-nodulating strains introduced into Polish soils and the first analyzing the long-term competitive relations of USDA 110 and USDA 123 after the two strains, neither of which was native, were introduced into the environment almost 2 decades ago.
Plant interactions with environmental factors cause changes in the metabolism and regulation of biochemical and physiological processes. Plant defense against pathogenic microorganisms depends on an innate immunity system that is activated as a result of infection. There are two mechanisms of triggering this system: basal immunity activated as a result of a perception of microbe-associated molecular patterns through pattern recognition receptors situated on the cell surface and effector-triggered immunity (ETI). An induced biosynthesis of bioactive secondary metabolites, in particular phytoalexins, is one of the mechanisms of plant defense to fungal infection. Results of the study on narrow leaf lupin (Lupinus angustifolius L.) plants infected with the anthracnose fungus Colletotrichum lupini and treated with fungal phytotoxic metabolites are described in the paper. The C. lupini phytotoxins were isolated from liquid cultures, purified and partially characterized with physicochemical methods. Accumulation of secondary metabolites on leaf surface and within the tissues of plants either infected, treated with the fungal phytotoxin or submitted to both treatments was studied using GC-MS and LC-MS, respectively. Substantial differences in isoflavone aglycones and glycoconjugate profiles occurred in response to different ways of plant treatment.Electronic supplementary materialThe online version of this article (doi:10.1007/s11306-012-0475-8) contains supplementary material, which is available to authorized users.
Genetic structure in field populations of Bradyrhizobium japonicum isolated in Poland was determined by using several complementary techniques. Of the 10 field sites examined, only 4 contained populations of indigenous B. japonicum strains. The Polish bradyrhizobia were divided into at least two major groups on the basis of protein profiles on polyacrylamide gels, serological reaction with polyclonal antisera, repetitive extragenic palindromic PCR fingerprints of genomic DNA, and Southern hybridization analyses with nif and nod gene probes. Serological analyses indicated that 87.5% of the Polish B. japonicum isolates tested were in serogroups 123 and 129, while seven (12.5%) of the isolates tested belonged to their own unique serogroup. These seven strains also could be grouped together on the basis of repetitive extragenic palindromic PCR fingerprints, protein profiles, and Southern hybridization analyses. Cluster analyses indicated that the seven serologically undefined isolates were genetically dissimilar from the majority of the Polish B. japonicum strains. Moreover, immuno-cross-adsorption studies indicated that although the Polish B. japonicum strains reacted with polyclonal antisera prepared against strain USDA123, the majority failed to react with serogroup 123-and 129-specific antisera, suggesting that Polish bradyrhizobia comprise a unique group of root nodule bacteria which have only a few antigens in common with strains USDA123 and USDA129. Nodulation studies indicated that members of the serologically distinct group were very competitive for nodulation of Glycine max cv. Nawiko. None of the Polish serogroup 123 or 129 isolates were restricted for nodulation by USDA123-and USDA129-restricting soybean plant introduction genotypes. Taken together, our results indicate that while genetically diverse B. japonicum strains were isolated from some Polish soils, the majority of field sites contained no soybean-nodulating bacteria. In addition, despite the lack of long-term soybean production in Poland, field populations of unique B. japonicum strains are present in some Polish soils and these strains are very competitive for nodulation of currently used Polish soybean varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.