The nucleus accumbens in a brain region considered to be important in the regulation of appetitive behavior and reinforcement. The accumbens receives afferent input from corticolimbic and thalamic structures, which is primarily coded by excitatory amino acids (EAAs). The present studies investigated the role of EAA input to the nucleus accumbens in feeding behavior in rats, in two recently characterized subregions of the accumbens, the "core" and "shell". In the first series of experiments, it was shown that blockade of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and kainate glutamate receptors in the medial part of the accumbens, corresponding to the medial shell subregion, resulted in a pronounced feeding response. Bilateral microinfusion of 6,7-dinitroquinoxaline-2,3-dione (DNQX, 0.25-0.75 micrograms/0.5 microliters), 6-cyano-7-nitroquinoxaline (CNQX, 0.75-1.5 micrograms), and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo-(F) quinoxaline (NBQX, 0.2-1.0 micrograms) markedly stimulated food intake immediately following infusion, in a dose-dependent manner. Infusion of DNQX into the central accumbens region, corresponding to the core, did not elicit feeding. Infusion of the NMDA antagonists 2-amino-5-phosphonopentanoic acid (AP-5) and MK-801 (dizocilpine maleate) did not elicit feeding in either region. The feeding response to DNQX was blocked by local coinfusion of AMPA. Systemic pretreatment with naltrexone (5 mg/kg) had no effect on the DNQX-feeding response; however, prior systemic administration of both D-1 and D-2 antagonists reduced the response by half, suggesting a modulatory role for dopamine in the response. Moreover, the feeding response was completely inhibited by concurrent infusion of the GABAA agonist muscimol (10, 25 ng) into the lateral hypothalamus, a major projection area of the accumbens shell. These findings demonstrate a selective role for non-NMDA receptors in the nucleus accumbens shell in ingestive behavior, and suggest an important functional link between two major brain regions involved in reward, the nucleus accumbens and lateral hypothalamus.
Xenotransplantation of porcine islets is considered a viable alternative treatment for type 1 diabetes mellitus. Therefore, we characterized human PBL responding to porcine islets both in vitro by coculture and in vivo using SCID mice reconstituted with human PBLs (HuPBL-SCID) and transplanted with porcine islets. T cell lines generated in vitro and graft-infiltrating T cells obtained from HuPBL-SCID mice were CD4+-proliferated specifically to porcine islets cultured with autologous APC. This proliferation was abrogated by an anti-human class II Ab. These T cell lines also proliferated to purified swine leukocyte Ag (SLA) class I molecules in the presence of self-APC, indicating that the primary xenoantigens recognized are peptides derived from SLA. This CD4+ T cell line lysed porcine islets but not splenocytes. CD4+ T cell clones with Th0, Th1, and Th2 cytokine profiles were isolated. The Th0 and Th1 clones lysed porcine islets, whereas the Th2 clone that secreted a large amount of IL-4 was not lytic. These results demonstrate that human T cells responding to porcine islets are primarily CD4+ and recognize porcine xenoantigens by the indirect Ag pathway presentation. These activated T cells produce cytokines that lyse islets. Furthermore, we demonstrate that the major porcine xenoantigens recognized are SLA class I molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.