The ability to manipulate dense micrometre-scale objects in fluids is of interest to biosciences with a view to improving analysis techniques and enabling tissue engineering. A method of trapping micrometre-scale particles and manipulating them on a twodimensional plane is proposed and demonstrated. Phase-controlled counter-propagating waves are used to generate ultrasonic standing waves with arbitrary nodal positions. The acoustic radiation force drives dense particles to pressure nodes. It is shown analytically that a series of point-like traps can be produced in a two-dimensional plane using two orthogonal pairs of counter-propagating waves. These traps can be manipulated by appropriate adjustment of the relative phases. Four 5 MHz transducers (designed to minimize reflection) are used as sources of counter-propagating waves in a waterfilled cavity. Polystyrene beads of 10 mm diameter are trapped and manipulated. The relationship between trapped particle positions and the relative phases of the four transducers is measured and shown to agree with analytically derived expressions. The force available is measured by determining the response to a sudden change in field and found to be 30 pN, for a 30 V pp input, which is in agreement with the predictions of models of the system. A scalable fabrication approach to producing devices is demonstrated.
A method of manipulating microparticles in a liquid using ultrasound is proposed and demonstrated. An ultrasonic standing wave with nodal planes whose positions are controllable by varying the relative phase of two applied sinusoidal signals is generated using a pair of acoustically matched piezoelectric transducers. The resulting acoustic radiation force is used to trap micron scale particles at a series of arbitrary positions (determined by the relative phase) and then move them in a controlled manner. This method is demonstrated experimentally and 5 μm polystyrene particles are trapped and moved in one dimension through 140 μm.
A simple acoustic system consisting of a pair of parallel singe layered piezoelectric transducers submerged in a fluid used to form standing waves by a superposition of two counter-propagating waves is reported. The nodal positions of the standing wave are controlled by applying a variable phase difference to the transducers. This system was used to manipulate polystyrene micro-beads trapped at the nodal positions of the standing wave. The demonstrated good manipulation capability of the system is based on a lowering of the reflection coefficient in a narrow frequency band near the through-thickness resonance of the transducer plates.
An acoustic particle manipulation system is presented, using a flexible printed circuit board formed into a regular heptagon. It is operated at 4 MHz and has a side dimension of 10 mm. The heptagonal geometry was selected for its asymmetry, which tends to reduce standing wave behavior. This leads to the possibility of having fine control over the acoustic field by varying the output phases of the transducer elements. Configurations with two and three active transducers are demonstrated experimentally. It is shown that with two transducers, the particles align along straight lines, the position of which can be moved by varying the relative excitation phases of the two transducers. With three active transducers, hexagonal-shaped patterns are obtained that can also be moved, again according to the phase of the excitation signals. Huygens' principle-based simulations were used to investigate the resultant pressure distributions. Good agreement was achieved between these simulations and both Schlieren imaging and particle manipulation observations.
This paper proposes a robust color segmentation method for real-world scenes. The robustness comes from a physics-based color analysis and the use of robust statistics. We analyze data distributions in the RGB color space to identify (non-Gaussian) object color clusters which conform to the dichromatic reflection model. Such a physicsbased approach enables the detection of diffuse and specular interface reflections as well as body reflection, whose mixtures often confuse traditional statistics-based color segmentation algorithms. Experimental results show that accurate image segmentation can be realized and object colors can be correctly estimated without bias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.