We show that Bessel-function acoustic pressure fields can be used to trap and controllably position microparticles. A circular, 16-element ultrasound array generates and manipulates an acoustic field within a chamber, trapping microparticles and agglomerates. Changes in the phase of the sinusoidal signals applied to the array elements result in the movement of the Bessel-function pressure field and hence the microparticles. This demonstrates ultrasonic manipulation analogous to holographic optical tweezers. The manipulation limits of the device are explained by the existence of unwanted resonances within the manipulation chamber.
Experimental and magnetohydrodynamic simulation results of nanosecond time scale underwater electrical explosions of Al, Cu, and W wires are presented. A water forming line generator with current amplitude up to 100kA was used. The maximum current rise rate and maximum Joule heating power achieved during wire explosions were dI∕dt⩽500A∕ns and 6GW, respectively. Extremely high energy deposition of up to 60 times the atomization enthalpy was registered compared to the best reported result of 20 times the atomization enthalpy for energy deposition with a vacuum wire explosion. Discharge channel evolution and surface temperature were analyzed by streak shadow imaging and by a fast photodiode with a set of interference filters, respectively. A 1D magnetohydrodynamic simulation demonstrated good agreement with experimental parameters such as discharge channel current, voltage, radius, and temperature. Material conductivity was calculated to produce the best correlation between the simulated and experimentally obtained voltage. It is shown that material conductivity may significantly vary as a function of energy deposition rate.
A simple acoustic system consisting of a pair of parallel singe layered piezoelectric transducers submerged in a fluid used to form standing waves by a superposition of two counter-propagating waves is reported. The nodal positions of the standing wave are controlled by applying a variable phase difference to the transducers. This system was used to manipulate polystyrene micro-beads trapped at the nodal positions of the standing wave. The demonstrated good manipulation capability of the system is based on a lowering of the reflection coefficient in a narrow frequency band near the through-thickness resonance of the transducer plates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.