Experimental and magnetohydrodynamic simulation results of nanosecond time scale underwater electrical explosions of Al, Cu, and W wires are presented. A water forming line generator with current amplitude up to 100kA was used. The maximum current rise rate and maximum Joule heating power achieved during wire explosions were dI∕dt⩽500A∕ns and 6GW, respectively. Extremely high energy deposition of up to 60 times the atomization enthalpy was registered compared to the best reported result of 20 times the atomization enthalpy for energy deposition with a vacuum wire explosion. Discharge channel evolution and surface temperature were analyzed by streak shadow imaging and by a fast photodiode with a set of interference filters, respectively. A 1D magnetohydrodynamic simulation demonstrated good agreement with experimental parameters such as discharge channel current, voltage, radius, and temperature. Material conductivity was calculated to produce the best correlation between the simulated and experimentally obtained voltage. It is shown that material conductivity may significantly vary as a function of energy deposition rate.
An investigation of the properties of the plasma and the electron beam produced by velvet cathodes in a diode powered by a ∼200kV, ∼300ns pulse is presented. Spectroscopic measurements demonstrated that the source of the electrons is surface plasma with electron density and temperature of ∼4×1014cm−3 and ∼7eV, respectively, for an electron current density of ∼50A∕cm2. At the beginning of the accelerating pulse, the plasma expands at a velocity of ∼106cm∕s towards the anode for a few millimeters, where its stoppage occurs. It was shown by optical and x-ray diagnostics that in spite of the individual character and nonuniform cross-sectional distribution of the cathode plasma sources, the uniformity of the extracted electron beam is satisfactory. A mechanism controlling the electron current-density cross-sectional uniformity is suggested. This mechanism is based on a fast radial plasma expansion towards the center due to a magnetic-field radial gradient. Finally, it was shown that the interaction of the electron beam with the stainless-steel anode does not lead to the formation of an anode plasma.
A number of theoretical approaches to the analysis of the parameters of a discharge channel consisting of strongly coupled plasma generated in the process of underwater electrical wire explosion are presented. The analysis is based on experimental results obtained from discharges employing Cu wire. The obtained experimental data included electrical measurements and optical observations from which information about the dynamics of the water flow was extrapolated. Numerical calculation based on a 1D magnetohydrodynamic model was used to simulate the process of underwater wire explosion. A wide range conductivity model was applied in this calculation and good agreement with a set of experimental data was obtained. A method of determining the average temperature of the discharge channel based on this model and experimental results is proposed, and the limits of this method's applicability are discussed.
Results related to the generation of an extreme state of water with pressure up to (4.3 ± 0.2)·1011 Pa, density up to 4.2 ± 0.1 g/cm3, and temperature up to 2.2 ± 0.1 eV in the vicinity of the implosion axis of a converging strong shock wave are reported. The shock wave was produced by the underwater electrical explosion of a cylindrical Cu wire array. A ∼8 kJ pulse generator with a current amplitude ≤550 kA and rise time of 350 ns was used to explode arrays having varying lengths, radii, and number of wires. Hydrodynamic numerical simulations coupled to the experimental data of the shock wave propagation in water, rate of energy deposition into the array, and light emission from the compressed water in the vicinity of the implosion axis were used to determine the pressure, density, and temperature profiles during the implosion. Results of a comparison between these parameters obtained with the SESAME and quantum molecular dynamics data bases of equation of state for water are reported as well. Also, the dependences of the maximal pressure in the vicinity of the implosion axes on the array radius and the deposited energy density per unit length are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.