Immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 axis induce sustained clinical responses in a sizable minority of cancer patients. We found that primary resistance to ICIs can be attributed to abnormal gut microbiome composition. Antibiotics inhibited the clinical benefit of ICIs in patients with advanced cancer. Fecal microbiota transplantation (FMT) from cancer patients who responded to ICIs into germ-free or antibiotic-treated mice ameliorated the antitumor effects of PD-1 blockade, whereas FMT from nonresponding patients failed to do so. Metagenomics of patient stool samples at diagnosis revealed correlations between clinical responses to ICIs and the relative abundance of Akkermansia muciniphila. Oral supplementation with A. muciniphila after FMT with nonresponder feces restored the efficacy of PD-1 blockade in an interleukin-12–dependent manner by increasing the recruitment of CCR9+CXCR3+CD4+ T lymphocytes into mouse tumor beds.
Immune checkpoint inhibitors radically changed the treatment of patients with non-small cell lung cancer (NSCLC). However, only one-quarter of patients benefit from these new therapies when used as monotherapy. The assessment of Program Death Ligand-1 (PD-L1) tumor expression by immunohistochemistry is used to select potential responder patients, but this not an optimal marker since it does not predict the absence of anti PD-1 efficacy. Despite this shortcoming, PD-L1 remains the gold standard biomarker in many studies and the only biomarker available for clinicians. In addition to histological markers, transcriptomic and exome analyses have revealed potential biomarkers requiring further confirmation. Recently, tumor mutational burden has emerged as a good surrogate marker of outcome. In this review we will detail current knowledge on DNA and RNA related biomarkers.
Bevacizumab is used to treat glioblastoma; however, no current biomarker predicts its efficacy. We used an exploratory cohort of patients treated with the radiochemotherapy then bevacizumab or chemotherapy at recurrence (N = 265). Bevacizumab use increased median overall survival (OS) 18.7 vs 11.3 months, p = 0.0014). In multivariate analysis, age, initial surgery, neutrophil count, Karnofsky status >70% and bevacizumab administration were independent prognostic factors of survival. We found an interaction between bevacizumab use and baseline neutrophil count. The cut-off value for the neutrophil count was set at 6000/mm3. Only patients with a high neutrophil count benefited from the bevacizumab treatment (17.3 vs 8.8 months p < 0.0001). We validated this result using data from the TEMAVIR trial, which tested the efficacy of neoadjuvant bevacizumab plus irinotecan versus radiochemotherapy in the first-line treatment of glioblastoma. Transcriptomic data from TCGA underlined that CSF3 expression, the gene encoding G-CSF, the growth factor for neutrophils, correlated with VEGF-A-dependent angiogenesis. In another independent cohort (BELOB trial), which compared lomustine versus lomustine plus bevacizumab at recurrence, bevacizumab only benefited patients with high CSF3 expression in the tumor. These data suggest that only patients with a high peripheral neutrophil count before bevacizumab treatment benefited from this therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.