Abstract. The mm-wave spectrum of the C-star envelope IRC+10216 has been continuously surveyed between 129.0 and 172.5 GHz with the IRAM 30-m telescope. 380 lines are detected, of which 317 have been identified. The identified lines arise from 30 different molecules and radicals which, in their vast majority, are not observed in hot and dense interstellar clouds such as Orion A or W3(OH). Actually, half of the molecular species identified in the mm-wave spectrum of IRC+10216 were first observed in the course of this spectral survey.The new species include several carbon-chain molecules and radicals, as well as silicon and metallic compounds. They also include molecules containing rare isotopes of C, Mg, Si, S and Cl, whose elemental abundance ratios in the envelope are redetermined. We observe, in particular, four 13 C isotopomers of C 4 H, three of C 3 N and HC 3 N, and four doubly-substituted isotopomers of SiS and CS.63 lines remain unidentified. Probably, a large fraction of those are rotational transitions inside the excited bending states of the abundant species NaCN, C 5 H, and C 6 H. We can also expect some lines to be ground state transitions of poorly known silicon and metal compounds, such as the slightly asymmetrical top molecule SiCSi.
Context. Water is a primordial species in the emergence of life, and comets may have brought a large fraction to Earth to form the oceans. To understand the evolution of water from the first stages of star formation to the formation of planets and comets, the HDO/H 2 O ratio is a powerful diagnostic. Aims. Our aim is to determine precisely the abundance distribution of HDO towards the low-mass protostar IRAS 16293-2422 and learn more about the water formation mechanisms by determining the HDO/H 2 O abundance ratio. Results. It is the first time that so many HDO and H 182 O transitions have been detected towards the same source with high spectral resolution. We derive an inner HDO abundance (T ≥ 100 K) of about 1.7 × 10 −7 and an outer HDO abundance (T < 100 K) of about 8 × 10 −11 . To reproduce the HDO absorption lines observed at 894 and 465 GHz, it is necessary to add an absorbing layer in front of the envelope. It may correspond to a water-rich layer created by the photodesorption of the ices at the edges of the molecular cloud. At a 3σ uncertainty, the HDO/H 2 O ratio is 1.4-5.8% in the hot corino, whereas it is 0.2-2.2% in the outer envelope. It is estimated at ∼4.8% in the added absorbing layer. Conclusions. Although it is clearly higher than the cosmic D/H abundance, the HDO/H 2 O ratio remains lower than the D/H ratio derived for other deuterated molecules observed in the same source. The similarity of the ratios derived in the hot corino and in the added absorbing layer suggests that water formed before the gravitational collapse of the protostar, contrary to formaldehyde and methanol, which formed later once the CO molecules had depleted on the grains.
Context. Mantles of iced water mixed with carbon monoxyde, formaldehyde, and methanol are formed during the so-called prestellar core phase. In addition, radicals are also thought to be formed on the grain surfaces, and to react to form complex organic molecules later on, during the so-called warm-up phase of the protostellar evolution. Aims. We aim to study the formation of the grain mantles during the prestellar core phase and the abundance of formaldehyde, methanol, and radicals trapped in them. Methods. We have developed a macrosopic statistic multilayer model that follows the formation of grain mantles with time and that includes two effects that may increase the number of radicals trapped in the mantles: i) during the mantle formation, only the surface layer is chemically active and not the entire bulk; and ii) the porous structure of grains allows the trapping reactive particles. The model considers a network of H, O, and CO forming neutral species such as water, CO, formaldehyde, and methanol, plus several radicals. We ran a large grid of models to study the impact of the mantle multilayer nature and grain porous structure. In addition, we explored how the uncertainty of other key parameters influences the mantle composition. Results. Our model predicts relatively high abundances of radicals, especially of HCO and CH 3 O (10 −9 −10 −7 ). In addition, the multilayer approach enables us to follow the chemical differentiation within the grain mantle, showing that the mantles are far from being uniform. For example, methanol is mostly present in the outer layers of the mantles, whereas CO and other reactive species are trapped in the inner layers. The overall mantle composition depends on the density and age of the prestellar core as well as on some microscopic parameters, such as the diffusion energy and the hydrogenation reactions activation energy. Comparison with observations allows us to constrain the value of the last two parameters (0.5-0.65 and 1500 K, respectively) and provide some indications on the physical conditions during the formation of the ices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.