Heart failure is one of the severe diseases which menace the human health and affect millions of people. Half of all patients diagnosed with heart failure die within four years. For the purpose of avoiding life-threatening situations and minimizing the costs, it is important to predict mortality rates of heart failure patients. As part of a HEIF-5 project, a data mining study was conducted aiming specifically at extracting new knowledge from a group of patients suffering from heart failure and using it for prediction of mortality rates. The methodology of knowledge discovery in databases is analyzed within the framework of home telemonitoring. Several data mining methods such as a Bayesian network method, a decision tree method, a neural network method and a nearest neighbour method are employed. The accuracy for the data mining methods from the point of view of avoiding life-threatening situations and minimizing the costs is discussed. It seems that the decision tree method achieves the best accuracy results and is also interpretable for the clinicians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.