At the present time heart disease is a major cause of death. Factors such as physical inactiveness, obesity, diabetes, social isolation and aging are expected to make the situation worse. It is worsened even further with misdiagnosis of patients describing heart related issues. A probability decision support approach to diagnosis of heart disease based on Naive Bayes is discussed here as most hospitals collect patient records but these are rarely used for automatic decision support. The approach is analyzed on Statlog heart data with the focus on improving preprocessing methods. As the result, a discretization algorithm with Equal Frequency Discretization which considers the specifics of engaged heart disease patients is presented. Enhancements of achieved accuracy with the added discretization and in comparison with other machine learning algorithms are shown in experiments founded on 10-fold cross-validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.