Road discrepancies such as potholes and road cracks are often present in our day-to-day commuting and travel. The cost of damage repairs caused by potholes has always been a concern for owners of any type of vehicle. Thus, an early detection processes can contribute to the swift response of road maintenance services and the prevention of pothole related accidents. In this paper, automatic detection of potholes is performed using the computer vision model library, You Look Only Once version 3, also known as Yolo v3. Light and weather during driving naturally affect our ability to observe road damage. Such adverse conditions also negatively influence the performance of visual object detectors. The aim of this work was to examine the effect adverse conditions have on pothole detection. The basic design of this study is therefore composed of two main parts: (1) dataset creation and data processing, and (2) dataset experiments using Yolo v3. Additionally, Sparse R-CNN was incorporated into our experiments. For this purpose, a dataset consisting of subsets of images recorded under different light and weather was developed. To the best of our knowledge, there exists no detailed analysis of pothole detection performance under adverse conditions. Despite the existence of newer libraries, Yolo v3 is still a competitive architecture that provides good results with lower hardware requirements.
At the present time heart disease is a major cause of death. Factors such as physical inactiveness, obesity, diabetes, social isolation and aging are expected to make the situation worse. It is worsened even further with misdiagnosis of patients describing heart related issues. A probability decision support approach to diagnosis of heart disease based on Naive Bayes is discussed here as most hospitals collect patient records but these are rarely used for automatic decision support. The approach is analyzed on Statlog heart data with the focus on improving preprocessing methods. As the result, a discretization algorithm with Equal Frequency Discretization which considers the specifics of engaged heart disease patients is presented. Enhancements of achieved accuracy with the added discretization and in comparison with other machine learning algorithms are shown in experiments founded on 10-fold cross-validation.
The effects of a static magnetic field on systems with chaotic dynamical behavior have attracted little attention so far. Here, Chua’s electronic circuit with an inductor placed in a static uniform magnetic field operating in a chaotic double-scroll regime is studied experimentally. The effect of the magnetic field on the duty cycle factor and the spike count rate, with spikes defined by crossings between the scrolls of the double-scroll attractor, is described. A slow monotonic variation in the duty cycle factor and constant spike count rate is observed for magnetic field intensities up to the threshold, where both these metrics change severely; the dynamic trajectory remains on one scroll and spikes disappear. The dependence of the static magnetic field intensity on Chua’s circuit resistivity at the threshold is given. Two biomimetic magnetic chaotic sensors are proposed: one based on one Chua’s circuit and another that can have various transfer functions and is composed of several independent Chua’s circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.