Syzygium cumini (Myrtaceae) is a potential medicinal plant traditionally used in indigenous systems of medicines practiced in India and elsewhere due to its functional properties against metabolic inflammations viz., anti-hyperglycemic, anti-inflammatory, cardio-protective, and antioxidant activities. Targeting metabolic inflammation has emerged as a standalone strategy to attenuate metabolic disease. Myricetin (3,5,7,3′,4′,5′-hexahydroxyflavone) is one of the flavonoids from stem bark, leaf, flowers, fruits, pulp and seeds of S. cumini. Therefore, attention has been paid to explore bioactive potentials of this compound in S. cumini owing to its exemplary therapeutic prospective and health-promoting effects. Antioxidant effect of Myricetin from S. cumini has been though experimentally demonstrated, therapeutic potential of Myricetin has not been fully explored. In the present study, physicochemical, ADMET and druggability properties of Myricetin - a key flavonoid compound in S. cumini have been evaluated. Data implicates that this molecule of GRAS standard can be a novel jumble-sale lead in drug discovery. Keywords: Plant Based Natural Products (PBNPs); Drug Discovery; Pharmacological Activity; ADMET Properties; Flavonoid; Myricetin; Syzygium cumini
Plant Based Natural Products (PBNPs) have been subject of interest since ancient time due to their use in food, industrial and biomedical applications. Research attention has further augmented to explore their phytochemical composition, properties, and potential application in the post-COVID era. In the present study phytochemical screening has been carried out with Methanolic Leaf Extracts of Moringa oleifera (MLEMO) followed by Gas Chromatography-Mass Spectrometry (GCMS) analysis. Phytochemical analysis of MLEMO revealed the presence of Alkaloids, Carbohydrates, Coumarins, Flavonoids, Glycosides, Phenol, Proteins, Quinones, Saponins, Steroids, Tannins and Terpenoids. Further, GCMS analysis revealed the presence of 41 compounds of which Dihydroxyacetone; Monomethyl malonate; 4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl; 1,3-Propanediol, 2-ethyl-2-(hydroxymethyl); Propanoic acid, 2-methyl-, octyl ester; 3-Deoxy-d-mannoic lactone; Sorbitol; Inositol; Cyclohexanemethanol, alpha-methyl-4-(1-methylethyl), Hexadecanoic acid, Methyl palmitate; n-Hexadecanoic acid (Palmitic acid); 9-Octadecenoic acid, methyl ester; Phytol; 9,12,15-Octadecatrienoic acid; Octadecanoic acid; 9-Octadecenamide were prominent. Most of the compounds in the list are bioactive and possess medicinal properties that are expected to serve as a baseline lead for the development of therapeutic agents. Keywords: Phytochemical screening; GCMS; Bioactive Natural Products; Moringa oleifera; MLEMO; Biomedical application
9,12,15-Octadecatrienoic acid (ODA) a carboxylic acid composed of 18 carbon atoms and three cis double bonds. ODA is a plant derived essential fatty acid indispensable to the human system. ODA refers to many different structural and conformational isomers, that differ in the position of the double bonds along the backbone and on whether they are in cis ('Z') or trans ('E') conformation. It has been well established that ODA can only be outsourced from food and then converted into eicosa-pentaenoic acid (EPA) and docosa-hexaenoic acid (DHA) in the human system. However, this metabolic process is highly limited and the rate of conversion is influenced by several factors such as dose, gender, and disease. Studies suggest that ODA is associated with reduced risk of fatal ischemic heart disease. Further, higher intake may reduce the risk of sudden death among prevalent myocardial infarction in patients consistent with induced antiarrhythmic effect. ODA significantly reduces blood clots. Traditional usage of ODA is attributed to its cardiovascular-protective, anti-cancer, neuro-protective, anti-osteoporotic, anti-inflammatory, and anti-oxidative properties. Recent pharmacological indicate that ODA has anti-metabolic syndrome, anticancer, anti-inflammatory, anti-oxidant, anti-obesity, neuro-protective, and more specifically involved in the regulation of gut-micro-floral functionalities. Studies, both experimental and clinical trials indicate that ODA has anti-metabolic syndrome effects. In short, ODA is potentially used to treat many diseases, but in-depth ADMET studies are required to firmly re-establish its clinical efficacy and market potential. Keywords: ADMET; Moringa oleifera; Secondary Metabolites; Natural Products (NPs); Bioactive Substances; Octadecatrienoic acid (ODA); Eicosa-Pentaenoic Acid (EPA); Docosa-Hexaenoic Acid (DHA)
Current craze and concomitant rise of Artificial Intelligence and Machine Learning (AI&ML) in the post-COVID-era holds significant contribution to Drug Design and Development. Along with IoT, AI&ML has reduced human interface and improved the Quality of Life though Quality-Health-Care products. AI&ML approaches driven Rational Drug Design along with customised molecular modelling techniques such as in-silico simulation, pharmacophore modelling, molecular dynamics, virtual screening, and molecular docking aims to elucidate unforeseen bioactivity of natural products confined to limited timeframe with at-most perfection. Besides, it also defines the molecular determinants that partake in the interface with in the drug and the target to design more proficient drug leads. α-Linolenic acid (ALA), a carboxylic acid with 18 carbons and three cis double bonds, is an essential fatty acid required for normal human health and can be acquired through regular dietary supplementation of food. During the metabolic process, ALA is bio-transformed into EPA and DHA. ALA decreases the risk of heart disease by maintaining normal heart rhythm and pumping. Studies suggest that ALA is associated with reduced risk of fatal ischemic heart disease further higher intake may reduce the risk of sudden death among prevalent myocardial infarction patients consistent with induced antiarrhythmic effect. It reduces blood clots, besides, cardiovascular-protective, anti-cancer, neuro-protective, anti-osteoporotic, anti-inflammatory, and anti-oxidative effects. However, data on pharmacological and toxicological aspects of ALA is limited; on the other hand, no serious adverse effects of ALA have been reported yet. In the present study AI&ML approach based in-silico ADME-Tox and pharmacokinetic profile of ALA from Catharanthus roseus is envisaged. Keywords: IoT; AI&ML; ADME-Tox; α-Linolenic Acid (ALA); EPA; DHA Pharmacokinetics; Catharanthus roseus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.