Disturbance is a critical ecological process in forested systems, and disturbance maps are important for understanding forest dynamics. Landsat data are a key remote sensing dataset for monitoring forest disturbance and there recently has been major growth in the development of disturbance mapping algorithms. Many of these algorithms take advantage of the high temporal data volume to mine subtle signals in Landsat time series, but as those signals become subtler, they are more likely to be mixed with noise in Landsat data. This study examines the similarity among seven different algorithms in their ability to map the full range of magnitudes of forest disturbance over six different Landsat scenes distributed across the conterminous US. The maps agreed very well in terms of the amount of undisturbed forest over time; however, for the~30% of forest mapped as disturbed in a given year by at least one algorithm, there was little agreement about which pixels were affected. Algorithms that targeted higher-magnitude disturbances exhibited higher omission errors but lower commission errors than those targeting a broader range of disturbance magnitudes. These results suggest that a user of any given forest disturbance map should understand the map's strengths and weaknesses (in terms of omission and commission error rates), with respect to the disturbance targets of interest.
Tree canopy cover is a fundamental component of the landscape, and the amount of cover influences fire behavior, air pollution mitigation, and carbon storage. As such, efforts to empirically model percent tree canopy cover across the United States are a critical area of research. The 2001 national-scale canopy cover modeling and mapping effort was completed in 2006, and here we present results from a pilot study for a 2011 product. We examined the influence of two different modeling techniques (random forests and beta regression), two different Landsat imagery normalization processes, and eight different sampling intensities across five different pilot areas. We found that random forest out-performed beta regression techniques and that there was little difference between models developed based on the two different normalization techniques. Based on these results we present a prototype study design which will test canopy cover modeling approaches across a broader spatial scale.
This study evaluates six different approaches to classifying and mapping fire severity using multi-temporal Landsat Thematic Mapper data. The six approaches tested include: two based on temporal image differencing and ratioing between pre-fire and post-fire images, two based on principal component analysis of pre-and post-fire imagery, and two based on artificial neural networks, one using just postfire imagery and the other both pre-and post-fire imagery. Our results demonstrated the potential value for any of these methods to provide quantitative fire severity maps, but one of the image differencing methods (ND4/7) provided a flexible, robust, and analytically simple approach that could be applied anywhere in the Continental U.S.Based on the results of this test, the ND4/7 was implemented operationally to classify and map fire severity over
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.