Using images from the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), we have identified more than 300 extended 4.5 μm sources (Extended Green Objects (EGOs), for the common coding of the [4.5] band as green in three-color composite InfraRed Array Camera images). We present a catalog of these EGOs, including integrated flux density measurements at 3.6, 4.5, 5.8, 8.0, and 24 μm from GLIMPSE and the Multiband Imaging Photometer for Spitzer Galactic Plane Survey. The average angular separation between a source in our sample and the nearest IRAS point source is greater than 1 . The majority of EGOs are associated with infrared dark clouds (IRDCs), and where high-resolution 6.7 GHz CH 3 OH maser surveys overlap the GLIMPSE coverage, EGOs and 6.7 GHz CH 3 OH masers are strongly correlated. Extended 4.5 μm emission is thought to trace shocked molecular gas in protostellar outflows; the association of EGOs with IRDCs and 6.7 GHz CH 3 OH masers suggests that the extended 4.5 μm emission may pinpoint outflows specifically from massive protostars. The mid-IR colors of EGOs lie in regions of color-color space occupied by young protostars still embedded in infalling envelopes.
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations from the 2014 Long Baseline Campaign in dust continuum and spectral line emission from the HL Tau region. The continuum images at wavelengths of 2.9, 1.3, and 0.87 mm have unprecedented angular resolutions of 0″. 075 (10 AU) to 0″. 025 (3.5 AU), revealing an astonishing level of detail in the circumstellar disk surrounding the young solar analog HL Tau, with a pattern of bright and dark rings observed at all wavelengths. By fitting ellipses to the most distinct rings, we measure precise values for the disk inclination (46 .72 0 .05 ± • •) and position angle (138 .02 0 .07).
We present high spatial resolution observations of the multiple protostellar system IRAS 16293−2422 using the Submillimeter Array (SMA) at 300 GHz, and the Very Large Array (VLA) at frequencies from 1.5 to 43 GHz. This source was already known to be a binary system with its main components, A and B, separated by ∼ 5 ′′ . The new SMA data now separate source A into two submillimeter continuum components, which we denote Aa and Ab. The strongest of these, Aa, peaks between the centimeter radio sources A1 and A2, but the resolution of the current submillimeter data is insufficient to distinguish whether this is a separate source or the centroid of submillimeter dust emission associated with A1 and A2. Archival VLA data spanning 18 years show proper motion of sources A and B of 17 mas yr −1 , associated with the motion of the ρ Ophiuchi cloud. We also find, however, significant relative motion between the centimeter sources A1 and A2 which excludes the possibility that these
Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.