Magnetic nanoparticles (MNPs) offer promise for local hyperthermia or thermoablative cancer therapy. Magnetic hyperthermia uses MNPs to heat cancerous regions in an rf field. Metallic MNPs have larger magnetic moments than iron oxides, allowing similar heating at lower concentrations. By tuning the magnetic anisotropy in alloys, the heating rate at a particular particle size can be optimized. Fe–Co core-shell MNPs have protective CoFe2O4 shell which prevents oxidation. The oxide coating also aids in functionalization and improves biocompatibility of the MNPs. We predict the specific loss power (SLP) for FeCo (SLP ∼450W∕g) at biocompatible fields to be significantly larger in comparision to oxide materials. The anisotropy of Fe-Co MNPs may be tuned by composition and/or shape variation to achieve the maximum SLP at a desired particle size.
Magnetic nanoparticles (MNP) offer promise for local hyperthermia, thermoablative cancer therapy and microwave curing of polymers. Rosensweig's theory predicts that particle size dependence on RF magnetic heating of ferrofluids is chiefly determined by magnetic moment, magnetic anisotropy, and the viscosity of the fluid. Since relaxation times are thermally activated and material parameters can have strong T dependences, heating rates peak at a certain temperature. We extend the model to include the T dependence of the magnetization and anisotropy using mean field theory and literature reported T dependences of selected fluids considered for biomedical applications. We model materials with Curie temperatures near room temperature for which the magnetic properties are strongly T dependent to address the problem of self-regulated heating of ferrofluids.
Magnetic nanoparticles (MNPs) used as heat sources for cancer thermotherapy have received much recent attention. While the mechanism for power dissipation in MNPs in a rf field is well understood, a challenge in moving to clinical trials is an inadequate understanding of the power dissipation in MNP-impregnated systems and the discrepancy between the predicted and observed heating rates in the same. Here we use the Rosensweig [J. Magn. Magn. Mater. 252, 370 (2002)] model for heat generation in a single MNP, considering immediate heating of the MNPs, and the double spherical-shell heat transfer equations developed by Andrä et al. [J. Magn. Magn. Mater. 194, 197 (1999)] to model the heat distribution in and around a ferrofluid sample or a tumor impregnated with MNPs. We model the heat generated at the edge of a 2.15 cm spherical sample of FeCo/(Fe,Co)3O4 agglomerates containing 95 vol % MNPs with mean radius of 9 nm, dispersed at 1.5–1.6 vol % in bisphenol F. We match the model against experimental data for a similar system produced in our laboratory and find good agreement. Finite element models, extensible to more complex systems, have also been developed and checked against the analytical model and the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.