A major challenge in predicting Earth's future climate state is to understand feedbacks that alter greenhouse-gas forcing. Here we synthesize field data from arctic Alaska, showing that terrestrial changes in summer albedo contribute substantially to recent high-latitude warming trends. Pronounced terrestrial summer warming in arctic Alaska correlates with a lengthening of the snow-free season that has increased atmospheric heating locally by about 3 watts per square meter per decade (similar in magnitude to the regional heating expected over multiple decades from a doubling of atmospheric CO2). The continuation of current trends in shrub and tree expansion could further amplify this atmospheric heating by two to seven times.
Aim Describe the spatial and temporal properties of transitions in the Arctic and develop a conceptual understanding of the nature of these spatial transitions in the face of directional environmental change.Location Arctic tundra ecosystems of the North Slope of Alaska and the tundraforest region of the Seward Peninsula, AlaskaMethods We synthesize information from numerous studies on tundra and treeline ecosystems in an effort to document the spatial changes that occur across four arctic transitions. These transitions are: (i) the transition between High-Arctic and Low-Arctic systems, (ii) the transition between moist non-acidic tundra (MNT) and moist acidic tundra (MAT, also referred to as tussock tundra), (iii) the transition between tussock tundra and shrub tundra, (iv) the transition between tundra and forested systems. By documenting the nature of these spatial transitions, in terms of their environmental controls and vegetation patterns, we develop a conceptual model of temporal dynamics of arctic ecotones in response to environmental change.Results Our observations suggest that each transition is sensitive to a unique combination of controlling factors. The transition between High and Low Arctic is sensitive primarily to climate, whereas the MNT/MAT transition is also controlled by soil parent material, permafrost and hydrology. The tussock/shrub tundra transition appears to be responsive to several factors, including climate, topography and hydrology. Finally, the tundra/forest boundary responds primarily to climate and to climatically associated changes in permafrost. There were also important differences in the demography and distribution of the dominant plant species across the four vegetation transitions. The shrubs that characterize the tussock/shrub transition can achieve dominance potentially within a decade, whereas spruce trees often require several decades to centuries to achieve dominance within tundra, and Sphagnum moss colonization of non-acidic sites at the MNT/MAT boundary may require centuries to millennia of soil development.Main conclusions We suggest that vegetation will respond most rapidly to climatic change when (i) the vegetation transition correlates more strongly with climate than with other environmental variables, (ii) dominant species exhibit gradual changes in abundance across spatial transitions, and/or (iii) the dominant species have demographic properties that allow rapid increases in abundance following climatic shifts. All three of these properties characterize the transition between tussock tundra and low shrub tundra. It is therefore not surprising that of the four transitions studied this is the one that appears to be responding most rapidly to climatic warming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.