Using spin-polarized neutron reflectivity experiments, we demonstrate an unusual proximity behavior when a superconductor (SC) and a ferromagnet (FM) are coupled through an insulator (I) in YBa2Cu3O7−δ (SC)/SrTiO3 (I)/La0.67Sr0.33MnO3 (FM) heterostructures. We have observed an unexpected magnetic reversal confined to the interface region of the FM below the superconducting transition temperature. The magnetization of the interfacial FM layer at the I/FM interface was found to be aligned opposite to the magnetization of the rest of the FM layer. This result indicates that the Cooper pairs tunnel across the insulator, interact with the local magnetization in the interfacial region (extending ∼30 Å) of the FM, and then modify the magnetization at the interface. This unexpected magnetic behavior cannot be explained on the basis of the existing theoretical models. However, the length scale associated here clearly suggests the long-range proximity effect as a result of tunneling of Cooper pairs. The magnetic exchange field-effect across SC/I/FM interfaces driven by tunneling may serve as the basis for application in superconducting spintronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.