Alternatively activated macrophages (M2) have an important function in innate immune responses to parasitic helminths, and emerging evidence also indicates these cells are regulators of systemic metabolism. Here we show a critical role for mTORC2 signalling in the generation of M2 macrophages. Abrogation of mTORC2 signalling in macrophages by selective conditional deletion of the adaptor molecule Rictor inhibits the generation of M2 macrophages while leaving the generation of classically activated macrophages (M1) intact. Selective deletion of Rictor in macrophages prevents M2 differentiation and clearance of a parasitic helminth infection in mice, and also abrogates the ability of mice to regulate brown fat and maintain core body temperature. Our findings define a role for mTORC2 in macrophages in integrating signals from the immune microenvironment to promote innate type 2 immunity, and also to integrate systemic metabolic and thermogenic responses.
Idiopathic pulmonary fibrosis (IPF) is a fatal disease without any cure. Both human disease and animal models demonstrate dysregulated wound healing and unregulated fibrogenesis in a background of low-grade chronic T lymphocyte infiltration. Tissue-resident memory T cells (Trm) are emerging as important regulators of the immune microenvironment in response to pathogens, and we hypothesized that they might play a role in regulating the unremitting inflammation that promotes lung fibrosis. Herein, we demonstrate that lung-directed immunotherapy, in the form of i.n. vaccination, induces an antifibrotic T cell response capable of arresting and reversing lung fibrosis. In mice with established lung fibrosis, lung-specific T cell responses were able to reverse established pathology — as measured by decreased lung collagen, fibrocytes, and histologic injury — and improve physiologic function. Mechanistically, we demonstrate that this effect is mediated by vaccine-induced lung Trm. These data not only have implications for the development of immunotherapeutic regimens to treat IPF, but also suggest a role for targeting tissue-resident memory T cells to treat other tissue-specific inflammatory/autoimmune disorders.
Idiopathic pulmonary fibrosis (IPF) is a progressive disease of dysregulated wound healing leading to unremitting scarring and loss of lung function. The predominant symptoms are dyspnea on exertion and a persistent dry cough. For patients with IPF, cough is more than just bothersome; it has a significant negative impact on quality of life and is a marker of disease severity and progression. The etiology of cough in IPF is unclear but may be due to architectural distortion of the lungs, increased sensitivity of the cough reflex, airway inflammation, or changes in mucus production and clearance. There also may be an overlap between IPF cough and cough due to other common etiologies such as asthma, gastroesophageal reflux disease, upper airway cough syndrome, and medications. There are no approved therapies to specifically treat IPF cough, and recently approved medications for IPF have not been evaluated in cough. Few clinical trials have focused on treatments for IPF cough. To date, there is only one randomized, placebo control therapeutic study for IPF cough with thalidomide, which significantly reduced IPF cough and improved quality of life. Two additional cohort studies report that interferon-α and prednisolone also decrease IPF cough. However, no medication is approved to treat IPF cough. Currently, the mainstay of therapy for IPF cough is standard cough suppressants, which have limited efficacy and often intolerable side effects. Future studies are needed to determine an effective therapy to alleviate this particularly debilitating symptom and improve overall quality of life for patients suffering with IPF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.