The development and feasibility testing of a hybrid spacecraft heat rejection system that incorporates a single radiator capable of functioning as either a conventional space radiator or as a condenser in a refrigeration cycle is described. Emphasis is placed on development of the radiator/condenser (RC), which is considered to be the most critical component of the hybrid system. The selection, design and fabrication of candidate RC configurations are described together with preliminary parametric analyses necessary to establish pressure drop, heat transfer and flow stability characteristics. Verification testing in one-g and zero-g environments is described; the latter condition being obtained by means of a C-135 aircraft. The testing included flow visualization (i.e., high-speed photography) of the condensation processes in a parallel channel quartz tube system modeling the RC. Representative qualitative photographs are presented. Results indicate stable flow conditions prevail for both one-g and zero-g operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.