Nucleosomes are the basic packaging units of chromatin, modulating accessibility of regulatory proteins to DNA and thus influencing eukaryotic gene regulation. Elaborate chromatin remodeling mechanisms have evolved that govern nucleosome organization at promoters, regulatory elements, and other functional regions in the genome1. Analyses of chromatin landscape have uncovered a variety of mechanisms, including DNA sequence preferences, that can influence nucleosome positions2–4. To identify major determinants of nucleosome organization in the human genome, we utilized deep sequencing to map nucleosome positions in three primary human cell types and in vitro. A majority of the genome exhibited substantial flexibility of nucleosome positions while a small fraction showed reproducibly positioned nucleosomes. Certain sites that position in vitro can anchor the formation of nucleosomal arrays that have cell type-specific spacing in vivo. Our results unveil an interplay of sequence-based nucleosome preferences and non-nucleosomal factors in determining nucleosome organization within mammalian cells.
Expression cDNA cloning and structural analysis of the human keratinocyte growth factor receptor (KGFR) revealed identity with one of the fibroblast growth factor (FGF) receptors encoded by the bek gene (FGFR-2), except for a divergent stretch of 49 amino acids in their extracellular domains. Binding assays demonstrated that the KGFR was a high-affinity receptor for both KGF and acidic FGF, while FGFR-2 showed high affinity for basic and acidic FGF but no detectable binding by KGF. Genomic analysis of the bek gene revealed two alternative exons responsible for the region of divergence between the two receptors. The KGFR transcript was specific to epithelial cells, and it appeared to be differentially regulated with respect to the alternative FGFR-2 transcript. Thus, two growth factor receptors with different ligand-binding specificities and expression patterns are encoded by alternative transcripts of the same gene.
Fibrosis is observed in nearly every form of myocardial disease 1. Upon injury, cardiac fibroblasts (CF) in the heart begin to remodel the myocardium via extracellular matrix deposition, resulting in increased tissue stiffness and reduced compliance. Excessive cardiac fibrosis is an important factor in the progression of various forms of cardiac disease and heart failure 2. However, clinical interventions and therapies targeting fibrosis remain limited 3. In this study, we demonstrate the efficacy of redirected T-cell immunotherapy to specifically target pathologic cardiac fibrosis. We find that cardiac fibroblasts expressing a xenogeneic antigen can be effectively targeted and ablated by adoptive transfer of antigen-specific CD8 + T cells. Through expression analysis of cardiac fibroblast gene signatures from healthy versus diseased human hearts, we identified an endogenous CF target; fibroblast activation protein (FAP). Adoptive transfer of T cells expressing a chimeric antigen receptor (CAR) against FAP, results in a significant reduction in cardiac fibrosis and restoration of function after injury in mice. These results provide the proof-of-principle basis for a novel immunotherapeutic avenue for the treatment of cardiac disease.
Summary Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin and, independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery.
We have developed an efficient expression cloning system that allows rapid isolation of complementary DNAs able to induce the transformed phenotype. We searched for molecules expressed in epithelial cells and possessing transforming potential to fibroblasts, and cloned a cDNA for the normal receptor of a growth factor secreted by NIH/3T3 cells. Here we report a second novel transforming gene, ect2. The isolated cDNA is activated by amino-terminal truncation of the normal product. The Ect2 protein has sequence similarity within a central core of 255 amino acids with the products of the breakpoint cluster gene, bcr (ref. 5), the yeast cell cycle gene, CDC24 (ref. 6), and the dbl oncogene. Each of these genes encodes regulatory molecules or effectors for Rho-like small GTP-binding proteins. The baculovirus-expressed Ect2 protein could bind highly specifically to Rho and Rac proteins, whereas the dbl product showed broader binding specificity to Rho family proteins. Thus ect2 is a new member of an expanding family, whose products have transforming properties and interact with Rho-like proteins of the Ras superfamily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.