NBTI and PBTI are studied in IL/HK/MG gate stacks having EOT down to ∼ 6Å and fabricated using low T RTP based thermal IL and a novel IL/HK integration. At equivalent EOT, proposed stacks provide improved NBTI and similar PBTI when compared to conventional Chem-Ox IL based HKMG stacks. EOT scaling achieved by RTP thermal IL scaling shows lower rate of increase in NBTI and PBTI when compared to Chem-Ox IL scavenged stacks. Impact of Nitrogen and role of post HK nitridation are studied. Physical mechanism of improved BTI in proposed stacks is discussed in detail.
This paper describes a facile method for coating Ag nanowires with uniform, ferromagnetic sheaths made of polycrystalline Ni. A typical sample of these core/sheath nanowires had a saturation magnetization around 33 emu g(-1). We also demonstrated the use of this magnetic property to align the nanowires by simply placing a suspension of the nanowires on a substrate in a magnetic field and allowing the solvent to evaporate. The electrical conductivity of these core/sheath nanowires (2 × 10(3) S cm(-1)) was two orders of magnitude lower than that of bulk Ag (6.3 × 10(5) S cm(-1)) and Ni (1.4 × 10(5) S cm(-1)). This is likely caused by the transfer of electrons from the Ag core to the Ni sheath due to the difference in work function between the two metals. The electrons are expected to experience an increased resistance due to spin-dependent scattering caused by the randomized magnetic domains in the polycrystalline, ferromagnetic Ni sheath. Studies on the structural changes to the Ni coating over time under different storage conditions show that storage of the nanowires on a substrate under ambient conditions leads to very little Ni oxidation after 6 months. These Ag/Ni core/sheath nanowires show promise in areas such as electronics, spintronics, and displays.
The effects of discharge conditions on the sputtering, spatial distributions and transport patterns of sputtered atoms in a demountable, radiofrequency (r.f.) glow discharge (GD) atomizer, were investigated. Results obtained for sputtering of oxygen-free hard copper indicate that the GD plume is constricted by an increase in the Ar gas pressure and disturbed by Ar gashacuum flow. It is shown that the glow is an inhomogeneous medium and that most of the sputtered Cu atoms are localized in the front of the sampling orifice. Independent control of flow rate and pressure of the sputtering gas (Ar) is critical in determining the spatial distribution of analyte atoms within the atomizer chamber. Both the flow rate and the pressure of the Ar gas affect the removal of ground-state atoms from the analysis volume. The plasma location at different discharge parameters was also investigated in this study. The results show that the r.f. GD source is able to sustain a stable plasma which enables the sequential atomic absorption analysis and depth profiling of samples such as metal alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.