This paper demonstrates a swept high frequency eddy current (SHFEC) methodology that can determine near-surface conductivity deviation profiles of shot-peened superalloy surfaces, from which residual stress state can be assessed nondestructively. Our methodology is built around a laboratory-grade SHFEC hardware and a model-based SHFEC data inversion software, both described in this article. For the demonstration, a series of shot-peened Inconel 718 block specimens is prepared and examined by the proposed SHFEC inversion technique. The conductivity depth profiles of the samples under various shot peening intensities have been obtained by the inversion. Several sensitivity and consistency test results are given to support the reliability of the inverted conductivity profiles. The extreme near-surface regions (10–20μm) of the shot-peened surfaces are also examined by various microstructural characterization methods such as scanning electron microscopy, energy dispersive x-ray spectroscopy, and x-ray diffraction, to examine our inversion results microscopically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.