The present meta-analysis of real-world data does not suggest that IBT is associated with AP. Although we should continue to remain vigilant, IBTs should be regarded as reasonable options to consider adding to the regimen of a patient with type 2 diabetes.
Aim
To retrospectively evaluate the interobserver variability of intensive care unit (ICU) practitioners and radiologists who used the M-BLUE (modified bedside lung ultrasound in emergency) protocol to assess coronavirus disease-19 (COVID-19) patients, and to determine the correlation between total M-BLUE protocol score and three different scoring systems reflecting disease severity.
Materials and methods
Institutional review board approval was obtained and informed consent was not required. Ninety-six lung ultrasonography (LUS) examinations were performed using the M-BLUE protocol in 79 consecutive COVID-19 patients. Two ICU practitioners and three radiologists reviewed video clips of the LUS of eight different regions in each lung retrospectively. Each observer, who was blind to the patient information, described each clip with M-BLUE terminology and assigned a corresponding score. Interobserver variability was assessed using intraclass correlation coefficient. Spearman’s correlation coefficient analysis (R-value) was used to assess the correlation between the total score of the eight video clips and disease severity.
Results
For different LUS signs, fair to good agreement was obtained (ICC = 0.601, 0.339, 0.334, and 0.557 for 0–3 points respectively). The overall interobserver variability was good for both the five different readers and consensus opinions (ICC = 0.618 and 0.607, respectively). There were good correlations between total LUS score and scores from three systems reflecting disease severity (R=0.394–0.660,
p<
0.01).
Conclusion
In conclusion, interobserver agreement for different signs and total scores in LUS is good and justifies its use in patients with COVID-19. The total scores of LUS are useful to indicate disease severity.
Hypoxia is a prominent microenvironment feature in a range of disorders including cancer, rheumatoid arthritis (RA), atherosclerosis, inflammatory bowel disease (IBD), infection and obesity. Hypoxia promotes biological functions of fibroblast-like synoviocytes via regulating hypoxia-inducible factor 1α (HIF1α). Dysregulated protein citrullination in RA drives the production of antibodies to citrullinated proteins, a highly specific biomarker of RA. However, the mechanisms promoting citrullination in RA are not yet fully elucidated. In this study, we investigated whether pathophysiological hypoxia as found in the rheumatoid synovium modulates the citrullination in human fibroblast-like synoviocytes (HFLS). Here, we found that peptidylarginine deiminase 2 (PAD2) and citrullinated proteins were increased in HFLS after exposure to hypoxia. Moreover, knocking down HIF1α by HIF1α siRNA ameliorated the expression of PAD2 and citrullinated proteins. Collectively, this study provides a new mechanism involved in generating citrullinated proteins: hypoxia promotes citrullination and PAD production in HFLS. Concurrently, we also proposed a novel hypoxia involved mechanism in RA pathogenesis. This study deepens our understanding of the role of hypoxia in the pathogenesis of RA and provides a potential therapeutic strategy for RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.