Aims: Biosurfactants and bioemulsifiers commonly have the advantages of biodegradability, low toxicity, selectivity and biocompatibility over chemically synthesized surfactants. The goal of the study is to present a novel bioemulsifier with great application potential.
Methods and Results: Aeribacillus pallidus YM‐1, isolated from crude oil contaminated soil, was found to produce a novel high molecular bioemulsifier with an emulsification index of 60 ± 1% without remarkable surface tension reduction (45·7 ± 0·1 mN m−1). The number‐average molecular weight was determined as 526 369 Da by gel permeation chromatography analysis. Bioemulsifier was subjected to FT‐IR and a complex of carbohydrates (41·1%), lipids (47·6%) and proteins (11·3%) was determined.
Conclusions: The bioemulsifier of A. pallidus YM‐1 was isolated from the glucose‐based culture medium and characterized with the help of chemical analytical techniques. The bioemulsifier exhibited a promising emulsifying property for biotechnology application potential in bioremediation and microbial enhanced oil recovery.
Significance and Impact of the Study: This is the first report of the bioemulsifier production by A. pallidus. The potential emulsifying activity of the bioemulsifier in the present study may be explored in various biotechnological and industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.