Acylated homoserine lactone molecules are used by a number of gram-negative bacteria to regulate cell density-dependent gene expression by a mechanism known as quorum sensing (QS). In Pseudomonas aeruginosa, QS or cell-to-cell signaling controls expression of a number of virulence factors, as well as biofilm differentiation. In this study, we investigated the role played by the las and rhl QS systems during the early stages of static biofilm formation when cells are adhering to a surface and forming microcolonies. These studies revealed a marked difference in biofilm formation between the PAO1 parent and the QS mutants when glucose, but not citrate, was used as the sole carbon source. To further elucidate the contribution of lasI and rhlI to biofilm maturation, we utilized fusions to unstable green fluorescent protein in concert with confocal microscopy to perform real-time temporal and spatial studies of these genes in a flowing environment. During the course of 8-day biofilm development, lasI expression was found to progressively decrease over time. Conversely, rhlI expression remained steady throughout biofilm development but occurred in a lower percentage of cells. Spatial analysis revealed that lasI and rhlI were maximally expressed in cells located at the substratum and that expression decreased with increasing biofilm height. Because QS was shown previously to be involved in biofilm differentiation, these findings have important implications for the design of biofilm prevention and eradication strategies.
A statistical analysis of > 2000 Escherichia coli genes suggested that the base following the translational stop codon might be an important feature of the signal for termination. The strengths of each of 12 possible ‘four base stop signals’ (UAAN, UGAN and UAGN) were tested in an in vivo termination assay that measured termination efficiency by its direct competition with frameshifting. Termination efficiencies varied significantly depending on both the stop codon and the fourth base, ranging from 80 (UAAU) to 7% (UGAC). For both the UAAN and UGAN series, the fourth base hierarchy was U > G > A approximately C. UAG stop codons, which are used rarely in E. coli, showed efficiencies comparable with UAAN and UGAN, but differed in that the hierarchy of the fourth base was G > U approximately A > C. The rate of release factor selection varied 30‐fold at UGAN stop signals, and 10‐fold for both the UAAN and UAGN series; it correlated well with the frequency with which the different UAAN and UGAN signals are found at natural termination sites. The results suggest that the identity of the base following the stop codon determines the efficiency of translational termination in E. coli. They also provide a rationale for the use of the strong UAAU signal in highly expressed genes and for the occurrence of the weaker UGAC signal at several recording sites.
The elemental stoichiometry of microalgae reflects their underlying macromolecular composition and influences competitive interactions among species and their role in the food web and biogeochemistry. Here we provide a new estimate of the macromolecular composition of microalgae using a hierarchical Bayesian analysis of data compiled from the literature. The median macromolecular composition of nutrient-sufficient exponentially growing microalgae is 32.2% protein, 17.3% lipid, 15.0% carbohydrate, 17.3% ash, 5.7% RNA, 1.1% chlorophyll-a and 1.0% DNA as percent dry weight. Our analysis identifies significant phylogenetic differences in macromolecular composition undetected by previous studies due to small sample sizes and the large inherent variability in macromolecular pools. The phylogenetic differences in macromolecular composition lead to variations in carbon-to-nitrogen ratios that are consistent with independent observations. These phylogenetic differences in macromolecular and elemental composition reflect adaptations in cellular architecture and biochemistry; specifically in the cell wall, the light harvesting apparatus, and storage pools.
We describe a measurement of the direct CP asymmetry between inclusive b-->s gamma and b-->s gamma decays. This asymmetry is expected to be less than 0.01 in the standard model, but could be enhanced up to about 0.10 by new physics contributions. We use a sample of 89 x 10(6) BB pairs recorded with the BABAR detector at SLAC PEP-II, from which we reconstruct a set of 12 exclusive b-->s gamma final states containing one charged or neutral kaon and one to three pions. We measure an asymmetry of A(CP)(b-->s gamma)=0.025+/-0.050(stat)+/-0.015(syst), corresponding to an allowed range of -0.06s gamma)<+0.11 at 90% confidence level.
We propose an approach to creating shared mixed realities based on the construction of transparent boundaries between real and virtual spaces. First, we introduce a taxonomy that classifies current approaches to shared spaces according to the three dimensions of transportation, artificiality, and spatiality. Second, we discuss our experience of staging a poetry performance simultaneously within real and virtual theaters. This demonstrates the complexities involved in establishing social interaction between real and virtual spaces and motivates the development of a systematic approach to mixing realities. Third, we introduce and demonstrate the technique of mixed-reality boundaries as a way of joining real and virtual spaces together in order to address some of these problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.