A thermosetting epoxy-polymer was modified by incorporating 9 wt% of carboxyl-terminated butadiene-acrylonitrile rubber microparticles and 10 wt% of silica nanoparticles. The tensile fatigue behavior at a stress ratio, R = 0.1 for both the neat-epoxy polymer (i.e., unmodified) and the hybrid-epoxy polymer was first investigated. The fatigue life of the hybrid-epoxy polymer was about six to ten times higher than that of the neat-epoxy polymer. Secondly, the neat- and the hybrid-epoxy resins were infused into a quasi-isotropic lay-up, E-glass fiber fabric via a ‘Resin Infusion under Flexible Tooling’ set-up to fabricate glass-fiber reinforced plastic (GFRP) composite panels. The tensile fatigue tests at a stress ratio, R = 0.1 were performed on both of these GFRP composites during which the matrix cracking and stiffness degradation were routinely monitored. The fatigue life of the GFRP composite increased by about six to ten times due to employing the hybrid-epoxy matrix, compared to employing the neat-epoxy matrix. Suppressed matrix cracking and a reduced crack propagation rate were observed in the hybrid-epoxy matrix, which resulted from the various toughening micromechanisms induced by the presence of both the rubber microparticles and silica nanoparticles. These factors were considered to contribute towards the enhanced fatigue life which was observed for the GFRP composite employing the hybrid-epoxy matrix.
A thermosetting epoxy resin was modified and four different types of bulk epoxy polymer sheets were prepared: (i) neat epoxy, (ii) epoxy with 9 wt.% rubber micro-particles, (iii) epoxy with 10 wt. % silica nano-particles, and (iv) epoxy with both 9 wt.% micron-rubber and 10 wt.% nano-silica particles. The tensile fatigue behaviour at a stress ratio R = 0.1 was investigated for all the materials. Addition of either the micron-rubber or nano-silica particles alone in the epoxy polymer had almost a similar beneficial effect and enhanced the fatigue life by about three to four times. The presence of both micron-rubber and nano-silica particles resulted in a further significant enhancement of the fatigue life, by about six to ten times. Fractographic studies suggested that the energy-dissipating mechanisms such as rubber cavitation and silica particle debonding, both being followed by plastic void growth of the epoxy, contributed to the enhanced fatigue lives which were observed in the modified epoxy polymers.
Introduction:
A thermosetting epoxy polymer was modified by incorporating 9 wt% of a CTBN rubber microparticles. The stress-controlled CA tensile fatigue behavior at stress ratio, R = 0.1 for both the neat and the modified epoxy was investigated. The addition of rubber particles increased the epoxy fatigue life by a factor of about three to four times. The rubber particle cavitation and plastic deformation of the surrounding material was observed to contribute to the enhanced fatigue life of the epoxy polymer. Then, the neat and the rubber-modified epoxy resins were infused into a quasi-isotropic, lay-up E-glass fiber, non-crimp fabric in a RIFT set -up to fabricate GFRP composite panels. Further, the stress-controlled CA tensile fatigue tests at stress ratio, R = 0.1 were performed on both of these GFRP composites. Matrix cracking and stiffness degradation was continuously monitored during the fatigue tests. Similar to bulk epoxy fatigue behavior, the fatigue life of GFRP composites increased by a factor of about three times due to the presence of rubber particles in the epoxy matrix. The suppressed matrix cracking and the reduced crack propagation rates in the rubber-modified matrix contribute towards the enhanced fatigue life of GFRP composites employing a rubber-modified epoxy matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.