The phenomenon of resistive switching (RS), which was initially linked to non-volatile resistive memory applications, has recently also been associated with the concept of memristors, whose adjustable multilevel resistance characteristics open up unforeseen perspectives in cognitive computing. Herein, we demonstrate that the resistance states of LixCoO2 thin film-based metal-insulator-metal (MIM) solid-state cells can be tuned by sequential programming voltage pulses, and that these resistance states are dramatically dependent on the pulses input rate, hence emulating biological synapse plasticity. In addition, we identify the underlying electrochemical processes of RS in our MIM cells, which also reveal a nanobattery-like behavior, leading to the generation of electrical signals that bring an unprecedented new dimension to the connection between memristors and neuromorphic systems. Therefore, these LixCoO2-based MIM devices allow for a combination of possibilities, offering new perspectives of usage in nanoelectronics and bio-inspired neuromorphic circuits.
LixCoO2, a thoroughly studied cathode material used extensively in Li-ion rechargeable batteries, has recently been proposed as a potential candidate for resistive random access memory and neuromorphic system applications. Memristive cells based on LixCoO2 thin films have been grown on Si substrates and two-probe current-voltage measurements were employed to investigate the origin and nature of resistive switching behavior exhibited by these cells. The results indicate that a voltage-driven metal-to-insulator transition of the active LixCoO2 layer is responsible for the resistive switching behavior, which has a homogeneous nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.