S,T IResidual Stress analysis utilizing x-ray diffraction in conjunction with material removal by chemical polishing provides a very effective method of analyzing the near surface residual stress profile of steels. In this experiment, residual stress profiling has been used to analyze the effects of surface ausrolling during the marquenching of a 9310 gear steel which has been carburized to 1% carbon. The ausrolling process is an advanced thermomechanical processing technique used to ausform only the critical surface layer of gears and produce a hard, tough, fine-grained martensitic product. This study compares the residual stress profile of a marquenched specimen with a moderately deformed ausrolled specimen and with a heavily deformed ausrolled specimen, in order to correlate the effects of residual stress with the improved fatigue properties of the gear steel. While no significant variation was observed between the residual stress profile of the marquenched specimens (no deformation) and the line contact ausrolled specimens (moderate deformation), significant increases in the amount of compressive residual stress was noted in the residual stress profile of the point contact ausrolled (heavily deformed) samples. The maximum increase in compressive residual stress due to point contact ausrolling was approximately 500 m a , when compared to the marquenched sample. This increased residual compressive stress will lower the effective shear stresses during rolling contact fatigue and would therefore explain some of the increase the rolling contact fatigue endurance of the point contact ausrolled specimens.
S,T IResidual Stress analysis utilizing x-ray diffraction in conjunction with material removal by chemical polishing provides a very effective method of analyzing the near surface residual stress profile of steels. In this experiment, residual stress profiling has been used to analyze the effects of surface ausrolling during the marquenching of a 9310 gear steel which has been carburized to 1% carbon. The ausrolling process is an advanced thermomechanical processing technique used to ausform only the critical surface layer of gears and produce a hard, tough, fine-grained martensitic product. This study compares the residual stress profile of a marquenched specimen with a moderately deformed ausrolled specimen and with a heavily deformed ausrolled specimen, in order to correlate the effects of residual stress with the improved fatigue properties of the gear steel. While no significant variation was observed between the residual stress profile of the marquenched specimens (no deformation) and the line contact ausrolled specimens (moderate deformation), significant increases in the amount of compressive residual stress was noted in the residual stress profile of the point contact ausrolled (heavily deformed) samples. The maximum increase in compressive residual stress due to point contact ausrolling was approximately 500 m a , when compared to the marquenched sample. This increased residual compressive stress will lower the effective shear stresses during rolling contact fatigue and would therefore explain some of the increase the rolling contact fatigue endurance of the point contact ausrolled specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.