Feeding behavior has the potential to enhance prediction of feed intake and to improve understanding of the relationships between behavior, DMI, ADG, and residual feed intake (RFI) in beef cattle. Two cohorts, born in 2009 and 2010, the progeny of Red Angus bulls (n = 58 heifers and n = 53 steers), were evaluated during the growing phase, and the latter group of steers was also evaluated during the finishing phase. All behavior analyses were based on 7 feeding behavior traits (bunk visit frequency, bunk visit duration [BVDUR], feed bout frequency, feed bout duration, meal frequency, meal duration, and average meal intake) and their relationships with ADG, DMI, and RFI. During the growing phase, feeding duration traits were most indicative of DMI with positive correlations between BVDUR and DMI for cohort 1 steers, growing phase
A total of 42 F(1) Red Angus progeny from sires divergent in maintenance energy (ME(M)) EPD were analyzed to determine whether selecting for sire ME(M) would alter end-product meat quality. Data from animals were grouped based on the divergence of the ME(M) EPD of their sire from the Red Angus Association-reported breed average and defined as either high or low, the assumption being that high-ME(M) cattle are less efficient because their maintenance requirements represent a larger proportion of their dietary intake. Steer progeny (n = 7) from the high group produced bottom round steaks with a greater a* (redness) color value (P = 0.02) after 5 d in a simulated retail display when compared with bottom round steaks from the low group (n = 18). Bottom round steaks from the high group had a greater b* (yellowness) color value at d 1 (P = 0.03) and d 5 (P = 0.01) of retail display. Samples from the biceps femoris were taken at 12 mo (from both steers and heifers) and 15 mo (from steers only) of age for fiber type proportion analysis. At 12 mo of age, steers from the low group had more type I fibers (P = 0.02), whereas steers from the high group had more type IIb fibers (P = 0.01). Furthermore, samples from steers in the low group at 15 mo had more type I fibers (P = 0.02), and steers from the high group maintained more type IIb fibers (P = 0.02). No changes in fiber type proportions were observed between the high- and low-ME(M) EPD heifers (n = 17). Relative mRNA abundance of genes involved in the synthesis, storage, and breakdown of glycogen were analyzed as a variable important for meat quality, but no statistical differences were observed. At 12 mo age, glycogenin (glyc) was negatively correlated with the proportion of type IIa fibers (r = -0.32 and P = 0.12) as well as with the proportion of type IIb fibers (r = -0.42 and P = 0.03) in the biceps femoris of the steers. In samples taken from the biceps femoris at 15 mo age, glyc was negatively correlated with the proportion of type IIa fibers (r = -0.42 and P = 0.03) in the steers. This indicates that relative mRNA expression of glyc may serve as a marker of muscle glycogen storage capacity in steers. Thus, selection for efficient Red Angus beef cattle based on sire ME(M) EPD does not adversely affect meat quality in F(1) progeny, based on the variables assessed in this study. Furthermore, selection for progeny from low-ME(M) EPD sires may improve fresh meat quality within Red Angus beef cattle.
Energy expenditure is a physiological process that may be closely associated with residual feed intake (RFI). The maintenance energy (ME(M)) EPD was developed by the Red Angus Association of America (RAAA) and is used as an indicator of energy expenditure. The objectives of this study were to evaluate and quantify the following relationships using progeny of Red Angus (RA) sires divergent for ME(M) EPD: 1) postweaning RFI and finishing phase feed efficiency (FE), 2) postweaning RFI and end-product quality, and 3) postweaning RFI and sire ME(M) EPD. A total of 12 RA sires divergent for ME(M) EPD were chosen using the RAAA-generated ME(M) EPD values and were partitioned into 2 groups: high ME(M) EPD (≥4 Mcal/mo) and low ME(M) EPD (<4 Mcal/mo), based on the breed average of 4 Mcal/mo. Commercial crossbred cows were inseminated to produce 3 cohorts of progeny, which were tested for postweaning RFI (cohorts 1, 2, and 3) and finishing phase FE (cohorts 1 and 3). Results indicate that postweaning RFI and finishing phase FE of steer progeny tended to be positively correlated (r = 0.38; P = 0.06) in cohort 1 and were positively correlated (r = 0.50; P = 0.001) in cohort 3. In addition, postweaning RFI was not phenotypically correlated (P > 0.05) with any carcass traits or end-product quality measurements. Sire ME(M) EPD was phenotypically correlated (P < 0.05) with carcass traits in cohort 1 (HCW, LM area, KPH, fat thickness, and yield grade) and cohort 2 (KPH and fat thickness). Since variation in measured LM area was not explained by the genetic potential of rib eye area EPD, and therefore, the observed correlation between sire ME(M) EPD and measured LM area may suggest an association between ME(M) EPD and LM area. A correlation (r = 0.24; P = 0.02) was observed between postweaning RFI and ultrasound intramuscular fat percentage in cohort 2 but was not detected in cohorts 1 or 3. In addition, no phenotypic relationship was observed (P > 0.05) between progeny postweaning RFI and sire ME(M) EPD. Therefore, results suggest 1) RFI measured during the postweaning growth phase is indicative of FE status in the finishing phase, 2) neither RFI nor sire ME(M) EPD negatively affected carcass or end-product quality, and 3) RFI and sire ME(M) EPD are not phenotypically associated.
Investigating the genetic and physiological drivers of postweaning residual feed intake (RFI) and finishing phase feed efficiency (FE) may identify underlying mechanisms that are responsible for the variation in these complex FE traits. The objectives were 1) to evaluate the relationship of serum IGF-I concentration and muscle gene expression with postweaning RFI and sire maintenance energy (MEM) EPD and 2) to determine fiber type composition as it relates to postweaning RFI and finishing phase FE. Results indicate that RFI and serum IGF-I concentration were not associated (P > 0.05); however, negative correlations (P < 0.05) between sire MEM EPD and serum IGF-I concentration were observed. Gene expression differences between high- and low-RFI animals were observed in cohort 1, where IGFBP5 expression was greater (P < 0.05) in high-RFI animals. When animals were grouped according to sire MEM EPD, the low MEM EPD group of cohort 1 showed greater muscle mRNA expression (P < 0.01) of fatty acid synthase (FASN) and marginally (P < 0.10) greater expression of IGFBP5 and C/EBP alpha (C/EBPα) whereas the high MEM EPD group of cohort 2 had greater muscle mRNA expression of IGFBP2 (P < 0.05) and C/EBPα (P ≤ 0.01) and marginally (P < 0.10) greater expression of IGFBP3. Biopsy tissue samples collected at harvest revealed that the percentage of type IIa fibers was lower (P ≤ 0.05) in high-RFI steers, with a similar trend (P < 0.10) being observed in high finishing phase FE steers. The percentage of type IIb fibers was higher (P < 0.05) in high-RFI (and finishing phase FE) steers than in low-RFI (and finishing phase FE) steers. There was a marginal, negative correlation between RFI and type I (r = -0.36, P = 0.08) and IIa (r = -0.37, P = 0.07) fiber percentages and a positive correlation (r = 0.48, P = 0.01) between RFI and type IIb fiber percentage whereas finishing phase FE was negatively correlated (r = -0.43, P = 0.03) with type I fiber percentage and positively correlated (r = 0.44, P = 0.03) with type IIb fiber percentage. Therefore, our data indicate that 1) serum IGF-I (collected at weaning) is not an indicator of postweaning RFI, 2) the GH-IGF axis appears to have some involvement with RFI at the molecular level; however, muscle gene expression results were not consistent across cohorts, and 3) low-RFI animals may have the ability to more efficiently maintain and accrete muscle mass due to their fiber type composition, specifically a greater proportion of type I fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.