Previous research has shown that postpartum administration of the nonsteroidal antiinflammatory drug (NSAID) sodium salicylate can increase 305-d milk yield in older dairy cattle (parity 3 and greater). However, in this prior work, sodium salicylate was delivered to cows via the drinking water, a method that does not align well with current grouping strategies on commercial dairy farms. The objective of the current study was to replicate these results on a commercial dairy farm with a simplified treatment protocol and to compare sodium salicylate with another NSAID, meloxicam. Dairy cattle in their second lactation and greater (n=51/treatment) were alternately assigned to 1 of 3 treatments at parturition, with treatments lasting for 3d. Experimental treatments began 12 to 36 h after parturition and were (1) 1 placebo bolus on the first day and 3 consecutive daily drenches of sodium salicylate (125 g/cow per day; SAL); (2) 1 bolus of meloxicam (675 mg/cow) and 3 drenches of an equal volume of water (MEL); or (3) 1 placebo bolus and 3 drenches of water (CON). Blood samples were collected on the first day of treatment, immediately following the last day of treatment, and 7d after the last day of treatment; plasma was analyzed for glucose, β-hydroxybutyrate (BHB), free fatty acids, haptoglobin, and paraoxonase. Milk production, body condition score, reproductive status, and retention in the herd were monitored for 365 d posttreatment, and effects of treatment, parity, days in milk, and interactions were evaluated in mixed effects models. Significance was declared at P<0.05. Whole-lactation milk and protein yields were greater in NSAID-treated cows, although 305-d fat production was not affected. There was a significant interaction of treatment and parity for plasma glucose concentration; MEL increased plasma glucose concentrations compared with CON and SAL in older cows. Sodium salicylate decreased plasma BHB concentration compared with MEL at 7d posttreatment, although no difference was detected immediately following treatment. Haptoglobin concentrations were elevated in SAL cows compared with CON. There was a tendency for CON cows to be removed from the herd more quickly than MEL cows (42 vs. 26% at 365 d posttreatment). Body condition score, concentrations of plasma free fatty acids and paraoxonase, and time to pregnancy were not affected by treatment. These results indicate that NSAID administration in postpartum cows has the potential to be a viable way to improve productivity and potentially longevity in commercial dairies, although further research is necessary to optimize recommendations for producers.
Previous research has shown that cows who receive treatment with nonsteroidal anti-inflammatory drugs after calving may have increased milk yield beginning near peak lactation, resulting in greater 305-d milk production. It has not been demonstrated whether this response is associated with greater feed intake following the first 3 wk of lactation. Dry matter intake (DMI) and milk yield were measured daily for 56 cows over the first 120 d in milk. Cows in their second parity and greater were blocked by parity and alternately enrolled 12 to 36 h after calving into 1 of 2 treatments: either 3 daily drenches of water or 3 daily drenches of a similar volume of water containing 125 g of sodium salicylate (SAL) beginning 12 to 36 h after calving. Cows were housed in individual stalls to monitor DMI. Blood samples were collected before calving and on the last day of treatment, as well as at 7, 11, 14, 18, 21, 35, 49, 63, 77, 91, 105, and 120 d in milk. The SAL treatment did not affect estimated 305-d milk, fat, or protein yields (from monthly test days), daily milk yield or components, energy-corrected milk, fat-corrected milk, or DMI; however, an interaction between parity and treatment was observed for DMI, where second-parity SAL cows had decreased intake with no differences observed in older cows. This resulted in a parity by treatment interaction for the ratio of energy-corrected milk to DMI. Similarly, no main effects of treatment were observed for plasma glucose, β-hydroxybutyrate (BHB), or fatty acid concentrations, but we noted interactions between treatment and parity for glucose, BHB, and insulin. Older cows had greater plasma glucose and insulin concentrations and decreased plasma BHB following SAL but no differences were observed in second parity animals. Alterations in glucose and insulin resulted in a tendency for a treatment by time interaction for the revised quantitative insulin sensitivity check index. Feeding behavior was also altered following SAL administration, resulting in fewer but longer meals, as well as a tendency for greater meal weight. A tendency for a treatment by week interaction for inter-meal interval was observed, as well as a parity by treatment interaction for meal weight. Despite the lack of a milk yield response, SAL had a prolonged programming effect on feeding behavior and blood variables over the first 120 DIM, with responses largely dependent on parity.
The relationship between hepatic acetyl CoA (AcCoA) content and dry matter intake (DMI) was evaluated using 28 multiparous Holstein cows; 14 were early postpartum (PP; 12.6 ± 3.8 d in milk) and 14 were late-lactation cows (LL; 269 ± 30 d in milk). Cows were fed once daily, and DMI was determined for the first 4h after feeding. Liver and blood samples were collected before feeding and 4h after feeding. Feed intake over the 4-h period ranged from 3.7 to 9.6 kg of dry matter and was similar for the 2 stages of lactation. Before feeding, hepatic AcCoA content was greater for PP compared with LL cows (34.4 vs. 12.5 nmol/g), and decreased over the 4h after feeding for PP only (28.7 vs. 34.4 nmol/g). The range for change in AcCoA over the 4-h period was wide for both PP (-24.3 to 10.4 nmol/g) and LL (-5.7 to 16.1 nmol/g), and was related negatively to DMI at 4h for both PP (R(2) = 0.55) and LL (R(2) = 0.31). The reduction in plasma NEFA concentration over the 4-h period was greater for PP than LL cows (-681 vs. -47 µEq/L), and was related to DMI at 4h for both PP and LL (both R(2) = 0.38). Greater DMI among cows over the first 4h after feeding might have been from a sharper reduction in supply of AcCoA in the liver for oxidation during meals because of the reduction in plasma NEFA concentration. Consistent with this is that the change in AcCoA was positively related to the reduction in plasma NEFA concentration for PP cows (R(2) = 0.31). However, change in plasma NEFA concentration was not related to change in hepatic AcCoA in LL cows, indicating that the pool of AcCoA in LL cows is not as dependent on NEFA flux to the liver as that of PP cows. Further research is required to determine production and fate of AcCoA within the timeframe of meals and the effects of feeding on energy charge in hepatic tissue.
Ruminants can convert feeds unsuitable and unpalatable for humans into milk and meat, and thereby play a key role in food security. Milk production efficiency is usually calculated as the ratio between nutrients secreted in milk and nutrient intake, but this metric does not address concerns about human/livestock feed competition. Our objective was to evaluate effects of diets composed of ecological leftovers (ECO; industrial by-products and feed produced on land unsuitable for human food production) on dairy cattle productivity compared with traditional diets used in the U.S. We also sought to estimate human-edible (HE) nutrient recovery rate (HE inputs vs. milk nutrients) in different scenarios: thrift (all potentially HE ingredients counted as such), choice (ingredients rarely consumed by humans considered not HE), and land use (land used for forage production could be used to grow corn and soybeans for direct human consumption). Experiment 1 evaluated effects of an ECO diet (ECO1), incorporating wheat straw and by-products, on performance of 12 mid-lactation cows in a crossover design with 20-d periods. Experiment 2 evaluated effects of a different ECO diet (ECO2), using winter crop forage and by-products with or without rumen-protected Lys and Met (ECO2-AA), on performance of 12 late-lactation cows in a 3 × 3 Latin square design with 21-d periods. Both ECO diets were compared to lactation diets typical in North America (CON). Although ECO1 decreased feed efficiency (milk yield ÷ feed intake), both feed intake and milk yield were maintained for primiparous cows. ECO1 increased the HE recovery of metabolizable energy (ME) and protein relative to CON1 across all food system scenarios. In Experiment 2, ECO diets significantly decreased feed intake and milk yield, and in the thrift scenario, recovery of ME and protein were worsened by ECO2. All diets resulted in a positive net recovery of HE digestible essential amino acids, and ECO diets further improved their recovery. In conclusion, several factors affect recovery of HE nutrients fed to dairy cows, including dietary composition, land use, and human food system assumptions. Depending on these factors, ECO diets can either improve or reduce the efficiency of converting HE nutrients from feeds into milk.
MicroRNA (miRNA) are abundant in milk, and likely have regulatory activity involving lactation and immunity. The objective of this study was to determine the miRNA profile in colostrum of overconditioned cows compared with cows of more moderate body condition score (BCS) at calving. Multiparous cows with either high (≥4.0 on a scale of 1 to 5; n = 7) or moderate BCS (2.75 to 3.50; n = 9) in the week before parturition were selected from a commercial dairy herd. Blood and colostrum were sampled within 24 h after calving. Blood serum was analyzed for free fatty acid (FFA) concentration. MicroRNA was isolated from colostrum samples after removing milk fat and cells. MicroRNA were sequenced, and reads were mapped to the bovine genome and to the existing database of miRNA at miR-Base.org. Two programs, Oasis 2.0 and miRDeep2, were employed in parallel for read alignment, and analysis of miRNA count data was performed using DESeq2. Identification of differentially expressed miRNA from DESeq2 was not affected by the differences in miRNA detected by the 2 mapping programs. Most abundant miRNA included miR-30a, miR-148a, miR-181a, let-7f, miR-26a, miR-21, miR-22, and miR-92a. Large-scale shifts in miRNA profile were not observed; however, colostrum of cows with high BCS contained less miR-486, which has been linked with altered glucose metabolism. Colostrum from cows with elevated serum FFA contained less miR-885, which may be connected to hepatic function during the transition period. Potential functions of abundant miRNA suggest involvement in development and maintenance of cellular function in the mammary gland, with the additional possibility of influencing neonatal tissue and immune system development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.