The inner membranes of mitochondria contain a family of carrier proteins that are responsible for the transport in and out of the mitochondrial matrix of substrates, products, co-factors and biosynthetic precursors that are essential for the function and activities of the organelle. This family of proteins is characterized by containing three tandem homologous sequence repeats of approximately 100 amino acids, each folded into two transmembrane alpha-helices linked by an extensive polar loop. Each repeat contains a characteristic conserved sequence. These features have been used to determine the extent of the family in genome sequences. The genome of Saccharomyces cerevisiae contains 34 members of the family. The identity of five of them was known before the determination of the genome sequence, but the functions of the remaining family members were not. This review describes how the functions of 15 of these previously unknown transport proteins have been determined by a strategy that consists of expressing the genes in Escherichia coli or Saccharomyces cerevisiae, reconstituting the gene products into liposomes and establishing their functions by transport assay. Genetic and biochemical evidence as well as phylogenetic considerations have guided the choice of substrates that were tested in the transport assays. The physiological roles of these carriers have been verified by genetic experiments. Various pieces of evidence point to the functions of six additional members of the family, but these proposals await confirmation by transport assay. The sequences of many of the newly identified yeast carriers have been used to characterize orthologs in other species, and in man five diseases are presently known to be caused by defects in specific mitochondrial carrier genes. The roles of eight yeast mitochondrial carriers remain to be established.
Mitochondrial carriers are a family of proteins that transport metabolites, nucleotides, and cofactors across the inner mitochondrial membrane thereby connecting cytosolic and matrix functions. The essential cofactor coenzyme A (CoA) is synthesized outside the mitochondrial matrix and therefore must be transported into mitochondria where it is required for a number of fundamental processes. In this work we have functionally identified and characterized SLC25A42, a novel human member of the mitochondrial carrier family. The SLC25A42 gene (Haitina, T., Lindblom, J., Renström, T., and Fredriksson, R., 2006, Genomics 88, 779 -790) was overexpressed in Escherichia coli, purified, and reconstituted into phospholipid vesicles. Its transport properties, kinetic parameters, and targeting to mitochondria demonstrate that SLC25A42 protein is a mitochondrial transporter for CoA and adenosine 3,5-diphosphate. SLC25A42 catalyzed only a counter-exchange transport, exhibited a high transport affinity for CoA, dephospho-CoA, ADP, and adenosine 3,5-diphosphate, was saturable and inhibited by bongkrekic acid and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A42 is to import CoA into mitochondria in exchange for intramitochondrial (deoxy)adenine nucleotides and adenosine 3,5-diphosphate. This is the first time that a mitochondrial carrier for CoA and adenosine 3,5-diphosphate has been characterized biochemically.The mitochondrial carrier family, or the solute carrier family 25 (SLC25), 3 comprises a large group of proteins that transport a variety of substrates across the inner mitochondrial membrane and, in a few cases, across other membranes (1, 2). Common structural features of the mitochondrial carrier family members consist in a tripartite structure (three repeats of ϳ100 amino acids), the presence of two transmembrane ␣-helices separated by hydrophilic loops in each repeat, and the presence of a signature motif at the C terminus of the first helix in each repeat (Ref. 3 and references therein). The SLC25 family is by far the largest of the currently known 43 SLC families. The Saccharomyces cerevisiae genome contains 35 members, that of Arabidopsis thaliana 58, and the human genome at least 48 SLC25 members. Until now, nearly 30 members and isoforms of this family have been identified in humans. These include the uncoupling protein and the carriers for ADP/ATP, phosphate, 2-oxoglutarate/malate, citrate, carnitine/acylcarnitine, dicarboxylates, ornithine and other basic amino acids, oxodicarboxylates, deoxynucleotides and thiamine pyrophosphate, aspartate-glutamate, glutamate, S-adenosylmethionine, ATPMg/Pi, pyrimidine nucleotides, and adenine nucleotides in peroxisomes (see Ref. 1 for a review and Refs. 4 -8). The present investigation was undertaken to identify the function of SLC25A42, a novel member of the SLC25 family recently found in the human genome (9). SLC25A42 is 318 amino acids long and is highly expressed in virtually all tissues, in most at higher levels than ma...
The mitochondrial carriers are a family of transport proteins that, with a few exceptions, are found in the inner membranes of mitochondria. They shuttle metabolites and cofactors through this membrane, and connect cytoplasmic functions with others in the matrix. SAM (S-adenosylmethionine) has to be transported into the mitochondria where it is converted into S-adenosylhomocysteine in methylation reactions of DNA, RNA and proteins. The transport of SAM has been investigated in rat liver mitochondria, but no protein has ever been associated with this activity. By using information derived from the phylogenetically distant yeast mitochondrial carrier for SAM and from related human expressed sequence tags, a human cDNA sequence was completed. This sequence was overexpressed in bacteria, and its product was purified, reconstituted into phospholipid vesicles and identified from its transport properties as the human mitochondrial SAM carrier (SAMC). Unlike the yeast orthologue, SAMC catalysed virtually only countertransport, exhibited a higher transport affinity for SAM and was strongly inhibited by tannic acid and Bromocresol Purple. SAMC was found to be expressed in all human tissues examined and was localized to the mitochondria. The physiological role of SAMC is probably to exchange cytosolic SAM for mitochondrial S-adenosylhomocysteine. This is the first report describing the identification and characterization of the human SAMC and its gene.
The genome of Saccharomyces cerevisiae contains 35 members of the mitochondrial carrier protein family, most of which have not yet been functionally identi®ed. Here the identi®cation of the mitochondrial carrier for S-adenosylmethionine (SAM) Sam5p is described. The corresponding gene has been overexpressed in bacteria and the protein has been reconstituted into phospholipid vesicles and identi®ed by its transport properties. In con®rmation of its identity, (i) the Sam5p±GFP protein was found to be targeted to mitochondria; (ii) the cells lacking the gene for this carrier showed auxotrophy for biotin (which is synthesized in the mitochondria by the SAM-requiring Bio2p) on fermentable carbon sources and a petite phenotype on non-fermentable substrates; and (iii) both phenotypes of the knock-out mutant were overcome by expressing the cytosolic SAM synthetase (Sam1p) inside the mitochondria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.