To identify genetic determinants of hypoxic cell death, we screened for hypoxia-resistant (Hyp) mutants in Caenorhabditis elegans and found that specific reduction-of-function (rf) mutants of daf-2, an insulin/insulinlike growth factor (IGF) receptor (INR) homolog gene, were profoundly Hyp. The hypoxia resistance was acutely inducible just before hypoxic exposure and was mediated through an AKT-1/PDK-1/forkhead transcription factor pathway overlapping with but distinct from signaling pathways regulating life-span and stress resistance. Selective neuronal and muscle expression of daf-2(+) restored hypoxic death, and daf-2(rf) prevented hypoxia-induced muscle and neuronal cell death, which demonstrates a potential for INR modulation in prophylaxis against hypoxic injury of neurons and myocytes.
Na(+)-activated potassium channels (K(Na)) have been identified in cardiomyocytes and neurons where they may provide protection against ischemia. We now report that K(Na) is encoded by the rSlo2 gene (also called Slack), the mammalian ortholog of slo-2 in C. elegans. rSlo2, heterologously expressed, shares many properties of native K(Na) including activation by intracellular Na(+), high conductance, and prominent subconductance states. In addition to activation by Na(+), we report that rSLO-2 channels are cooperatively activated by intracellular Cl(-), similar to C. elegans SLO-2 channels. Since intracellular Na(+) and Cl(-) both rise in oxygen-deprived cells, coactivation may more effectively trigger the activity of rSLO-2 channels in ischemia. In C. elegans, mutational and physiological analysis revealed that the SLO-2 current is a major component of the delayed rectifier. We demonstrate in C. elegans that slo-2 mutants are hypersensitive to hypoxia, suggesting a conserved role for the slo-2 gene subfamily.
The sensitivity of an organism and its cells to hypoxic injury varies widely; yet, few genetic determinants of metazoan hypoxic sensitivity have been identified. We report here the isolation of a profoundly hypoxia resistant mutant and its identification as a reduction-of-function allele of rrt-1, which encodes an arginyl-tRNA synthetase. rrt-1 knockdown before or after the hypoxic injury rescues animals from death. RNAi knockdown of most other aminoacyl-tRNA synthetases also confers hypoxia resistance, the level of which inversely correlates with translation rate. rrt-1(RNAi) blocked hypoxic induction of the unfolded protein response and tunicamycin toxicity. Disruption of the unfolded protein response partially suppressed the hypoxia resistance of rrt-1(lf). The data support a model where translational suppression induces hypoxia resistance, in part by reducing unfolded protein toxicity.
The molecular mechanisms underlying general anesthesia are unknown. For volatile general anesthetics (VAs), indirect evidence for both lipid and protein targets has been found. However, no in vivo data have implicated clearly any particular lipid or protein in the control of sensitivity to clinical concentrations of VAs. Genetics provides one approach toward identifying these mechanisms, but genes strongly regulating sensitivity to clinical concentrations of VAs have not been identified. By screening existing mutants of the nematode Caenorhabditis elegans, we found that a mutation in the neuronal syntaxin gene dominantly conferred resistance to the VAs isof lurane and halothane. By contrast, other mutations in syntaxin and in the syntaxin-binding proteins synaptobrevin and SNAP-25 produced VA hypersensitivity. The syntaxin allelic variation was striking, particularly for isof lurane, where a 33-fold range of sensitivities was seen. Both the resistant and hypersensitive mutations decrease synaptic transmission; thus, the indirect effect of reducing neurotransmission does not explain the VA resistance. As assessed by pharmacological criteria, halothane and isof lurane themselves reduced cholinergic transmission, and the presynaptic anesthetic effect was blocked by the resistant syntaxin mutation. A single gene mutation conferring highlevel resistance to VAs is inconsistent with nonspecific membrane-perturbation theories of anesthesia. The genetic and pharmacological data suggest that the resistant syntaxin mutant directly blocks VA binding to or efficacy against presynaptic targets that mediate anesthetic behavioral effects. Syntaxin and syntaxin-binding proteins are candidate anesthetic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.