We report the fabrication of a nanoelectromechanical system consisting of a
plate rotating around a multiwalled nanotube bearing. The motion is possible
thanks to the low intershell friction. Indeed, the nanotube has been engineered
so that the sliding happens between different shells. The plate rotation is
activated electrostatically with stator electrodes. The static friction force
is estimated at $\approx 2\cdot10^{-15}$ N/\AA$^2$.Comment: 4 pages, 3 figure
We report on the intershell electron transport in multiwalled carbon nanotubes (MWNTs). To do this, local and nonlocal four-point measurements are used to study the current path through the different shells of a MWNT. For short electrode separations less, similar 1 mum the current mainly flows through the two outer shells, described by a resistive transmission line with an intershell conductance per length of approximately (10 kOmega)(-1)/microm. The intershell transport is tunnel type and the transmission is consistent with the estimate based on the overlap between pi orbitals of neighboring shells.
We exploit the remarkable low-friction bearing capabilities of multiwalled carbon nanotubes (MWNTs) to realize nanoelectromechanical switches. Our switches consist of two open-ended MWNT segments separated by a nanometer-scale gap. Switching occurs through electrostatically actuated sliding of the inner nanotube shells to close the gap, producing a conducting ON state. For double-walled nanotubes in particular, a gate voltage can restore the insulating OFF state. Acting as a nonvolatile memory element capable of several switching cycles, our devices are straightforward to implement, self-aligned, and do not require complex fabrication or geometries, allowing for convenient scalability.
We report electrical transport experiments, using the phenomenon of electrical breakdown to perform thermometry, that probe the thermal properties of individual multiwalled carbon nanotubes. Our results show that nanotubes can readily conduct heat by ballistic phonon propagation. We determine the thermal conductance quantum, the ultimate limit to thermal conductance for a single phonon channel, and find good agreement with theoretical calculations. Moreover, our results suggest a breakdown mechanism of thermally activated C-C bond breaking coupled with the electrical stress of carrying 10 12 A=m 2 . We also demonstrate a current-driven self-heating technique to improve the conductance of nanotube devices dramatically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.