Six putative ATP-binding motifs of SecA protein were altered by oligonucleotide-directed mutagenesis to try to define the ATP-binding regions of this multifunctional protein. The effects of the mutations were analysed by genetic and biochemical assays. The results show that SecA contains two essential ATP-binding domains. One domain is responsible for high-affinity ATP binding and contains motifs A0 and B0, located at amino acid residues 102-109 and 198-210, respectively. A second domain is responsible for low-affinity ATP binding and contains motifs A3 and a predicted B motif located at amino acid residues 503-511 and 631-653, respectively. The ATP-binding properties of both domains were essential for SecA-dependent translocation ATPase and in vitro protein translocation activities. The significance of these findings for the mechanism of SecA-dependent protein translocation is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.