ObjectiveTo evaluate the role of concurrent systemic therapy to postoperative radiation therapy (RT) for locally advanced cutaneous head and neck squamous cell carcinoma (LA-cHNSCC).Materials and methodsA retrospective study of 32 patients with LA-cHNSCC receiving postoperative RT with and without systemic therapy was conducted. Patients with LA-cHNSCC after surgical resection with one or more high risk features were evaluated. Local regional control (LRC), distant control (DC), and acute and late toxicities were evaluated with Fisher exact tests. Progression-free survival (PFS) and overall survival (OS) were evaluated utilizing Kaplan Meier and log-rank analyses. Univariate Cox proportional hazard analyses were used to examine patient, disease, and treatment-related factors with OS and PFS.ResultsWhile comparing patients receiving RT with systemic therapy (n = 14) vs RT alone (n = 18), LRC was 92.9% vs 72.2% (p = 0.20), DC 92.9% vs 94.4% (p = 1.0), median PFS 17.7 months vs 34.4 months (p = 0.48), and median OS 20.9 months vs 34.4 months (p = 0.03), respectively. On univariate analyses, use of concurrent systemic therapy was associated with an increased risk of death with an HR of 3.5 [95% confidence interval (CI): 1.04 - 11.6] (p = 0.04), while patients treated for recurrent disease who had previously treated superficial primaries had improved OS with an HR of 0.10 [95% CI: 0.01-0.80] (p = 0.03). There were no significant differences in acute or chronic toxicities between groups.ConclusionsPatients receiving postoperative RT alone for LA-cHNSCC had better OS than patients receiving concurrent systemic therapy. There were no differences in any other endpoints evaluated.
Treatment failures of glioblastoma (GBM) occur within high-dose radiation fields. We hypothesized that this is due to increased capacity for DNA damage repair in GBM. We identified 24 adult GBM patients treated with maximal safe resection followed by radiation with concurrent and adjuvant temozolomide. The mRNA from patients was quantified using NanoString Technologies’ nCounter platform and compared with 12 non-neoplastic temporal lobe tissue samples as a control. Differential expression analysis identified seven DNA repair genes significantly upregulated in GBM tissues relative to controls (>4-fold difference, adjusted p values < 0.001). Among these seven genes, Cox proportional hazards models identified RAD51 to be associated with an increased risk of death (HR = 3.49; p = 0.03). Kaplan–Meier (KM) analysis showed that patients with high RAD51 expression had significantly shorter OS compared to low levels (median OS of 10.6 mo. vs 20.1 mo.; log-rank p = 0.03). Our findings were validated in a larger external dataset of 162 patients using publicly available gene expression data quantified by the same NanoString technology (median OS of 13.8 mo. vs. 17.4 mo; log-rank p = 0.006). Within this uniformly treated GBM population, RAD51, in the homologous recombination pathway, was overexpressed (vs. normal brain) and inversely correlated with OS. High RAD51 expression may be a prognostic biomarker and a therapeutic target in GBM.
mutations by DNA-based NGS, including 12 (80%) cases with splice donor site mutations, 1 (6.67%) cases with splice acceptor site alterations, 1 (6.67%) case with a novel deletion (chr7: 116411868 -116411883) at MET intron 13 region and 1 (6.67%) case with a novel deletion (chr7: 116412027 -116412042) at MET exon14 region. In this study, 6 somatic mutations which induce METex14 skipping were firstly discovered. So far, RT-PCR and Sanger sequencing were performed on 3 specimens, including 1 sample with conflicting RNA-and DNA-based NGS results and 2 samples with unreported somatic deletions. According to the results of RT-PCR and Sanger, the unmatched sample was false negative on the basis of DNA-based NGS result. Interestingly, METex14 skipping was mutually exclusive with other recognized genomic alterations (such as mutations in KRAS, BRAF, EGFR, NRAS and PIK3CA), while no significant difference was found between METex14 skipping and single driver gene. Conclusion: Mutational events of MET leading to exon 14 skipping are frequent occurred in Chinese PSC patients. DNA-based NGS could discover new somatic mutations which results in METex14 skipping. However, RNAbased NGS could provide more accurate results than DNA-based NGS. METex14 skipping was mutually exclusive with other drivers, thus strongly highlighting its potential oncogenic role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.