In this study, the potential effects of bacteria on the efficacy of frequently used chemotherapies was examined. Bacteria and cancer cell lines were examined in vitro and in vivo for changes in the efficacy of cancer cell killing mediated by chemotherapeutic agents. Of 30 drugs examined in vitro, the efficacy of 10 was found to be significantly inhibited by certain bacteria, while the same bacteria improved the efficacy of six others. HPLC and mass spectrometry analyses of sample drugs (gemcitabine, fludarabine, cladribine, CB1954) demonstrated modification of drug chemical structure. The chemoresistance or increased cytotoxicity observed in vitro with sample drugs (gemcitabine and CB1954) was replicated in in vivo murine subcutaneous tumour models. These findings suggest that bacterial presence in the body due to systemic or local infection may influence tumour responses or off-target toxicity during chemotherapy.
Objectives-The objective of this study was to examine determinants of excess coronary artery disease risk in UK South Asians, more prevalent in this population than UK Caucasians, by examining differences in risk factors, vascular function, and endothelial progenitor cells (EPCs
Background:Despite the importance of inflammation in cancer, the role of the cytokine IL-33, and its receptor ST2, in colon cancer is unclear. The aim of this study was to investigate the role of IL-33, and its receptor isoforms (ST2 and ST2L), in colon cancer.Methods:Serum levels of IL-33 and sST2 were determined with ELISA. ST2 and IL-33 expression was detected with quantitative real-time PCR (qRT–PCR), western blotting and immunohistochemistry. ST2 expression in CT26 cells was stably suppressed using ST2-specific shRNA. Cytokine and chemokine gene expression was detected with qRT–PCR.Results:Human colon tumours showed lower expression of ST2L as compared with adjacent non-tumour tissue (P<0.01). Moreover, the higher the tumour grade, the lower the expression of ST2L (P=0.026). Colon cancer cells expressed ST2 and IL-33 in vitro. Functional analyses showed that stimulation of tumour cells with IL-33 induced the expression of chemokine (C–C motif) ligand 2 (CCL2). Knockdown of ST2 in murine colon cancer cells resulted in enhanced tumour growth (P<0.05) in BALB/c mice in vivo. This was associated with a decrease in macrophage infiltration, with IL-33-induced macrophage recruitment reduced by antagonising CCL2 in vitro.Conclusion:The IL-33/ST2 signalling axis may have a protective role in colon carcinogenesis.
Tumor necrosis factor (TNF)-like cytokine 1A (TL1A)/TNF superfamily member 15 (TNFSF15) is a proinflammatory cytokine and TNFα superfamily member that is linked preclinically and clinically to inflammatory bowel disease (IBD). By homology and function, TNFα is its closest family member. In this study, we investigated the mechanism of TL1A-induced inflammation in CD4+ T cells and compared it with the TNFα pathway. We found that TL1A induces proinflammatory cytokines, including TNFα, from isolated human CD4+CD161+ T cells, whereas these cells were resistant to TNFα treatment. Anti-TNFα failed to block TL1A-induced cytokine production, indicating that the effects of TL1A are direct. Lastly, CD161 and TL1A expression were significantly and selectively increased in gut tissue biopsies, but not in the peripheral blood, from IBD patients. Thus, TLIA not only functions upstream of TNFα, driving its expression from CD161+ T cells, but is also independent of TNFα. These findings may have therapeutic IBD implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.