Kinematic and dynamic models quantify deformation and force balance in the Pamir, a region undergoing the rare and poorly understood process of intracontinental subduction. We constrain a detailed kinematic model with 506 recent GPS velocities and Quaternary fault slip rates and show that the Pamir is organized like the Himalaya and Tibet, with regions of (1) localized strain rate ≥100e‐9/year along the Pamir Frontal Thrust System (the subduction interface), similar to the Himalaya, and (2) distributed north‐south compression and east‐west extension, similar to Tibet. Through standard thin viscous sheet methods we demonstrate that the lithospheric force balance in the Pamir is a combination of stresses caused by gravitational potential energy and India‐Eurasia convergence accommodated at a subduction interface, in this case the Pamir Frontal Thrust System. We find that strain rate and deviatoric stress patterns near the Pamir Frontal Thrust System are characteristic of a mature subduction zone, despite its initiation in continental lithosphere. Although the Pamir and Tibet are kinematically and dynamically similar, the Pamir is stiffer overall than Tibet, perhaps due to the presence of the highly arcuate, geometrically stiffened continental slab at depth.
An updated kinematic model constrained by GPS observations and fault slip rate information from the Central Asia Fault Database provides updated modeled slip rates for major faults in the Pamir. The kinematic model constrains thin sheet continuum mechanics models that distinguish the contributions of subducting continental lithosphere to force balance. Dynamic model sensitivity tests show that major features of the force balance results are insensitive to chosen lithospheric compensation style, integration depth, and inclusion of subducting low‐density continental lithosphere in the upper 100 km. Forward models incorporate deviatoric stresses associated with gravitational potential energy, velocity boundary conditions, and lateral strength variations. Differential strain rate fields, which represent residual forces not accounted for in the forward models, separate and quantify the deformation associated with the Pamir slab. The downward pull of foundering lithosphere augments compression along the Pamir Frontal Thrust System and shear along the eastern and western Pamir boundaries. North‐south extension in the residual differential strain rate field is spatially associated with Pamir gneiss domes and may be related to the interaction of the slab with the mantle. We do not find evidence for slab pull associated with a separate Hindu Kush slab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.